
Math/CS 103 Professor: Padraic Bartlett

Lecture 11: Matrix Composition

Week 6 UCSB 2013

In class, we presented several example problems to give us practice with matrix compo-
sition! We go over those here.

1 Matrix Composition: The Definitions

On HW#13, one of the questions asks you to show the following statement:

Theorem. Take any pair of linear maps A : Rn → Rm, B : Rm → Rk with associated
matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 , B =


b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
...

. . .
...

bk,1 bk,2 . . . bk,m

 .

Let ~bri denote the vector given by the i-th row of B, and ~acj denote the vector given by
the j-th column of A.

Then. the matrix corresponding to their composition B ◦ A : Rn → Rk is the k × n
matrix 

~br1 · ~a1 ~br1 · ~a2 . . . ~br1 · ~an
~br2 · ~a1 ~br2 · ~a2 . . . ~br2 · ~an
. . . . . .

. . . . . .
~brk · ~a1 ~brk · ~a2 . . . ~brk · ~an

 .

Even if you didn’t prove this problem, I’ve asked people to become comfortable with at
least using this result, so that they can manipulate and do things with matrix multiplica-
tion!

In lecture, I asked a number of problems that were designed to give you some experience
with this concept. Proofs of these problems are presented here!

2 Examples

Question. For any n, can you find an n × n matrix M such that Mn is equal the the
all-zeroes matrix, but Mk is not, for any 1 ≤ k ≤ n− 1?
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Answer. Yes! Consider the matrix

0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1
0 0 0 0 0 . . . 0


This is the matrix with 0’s everywhere except for the cells directly above the top left-

bottom right diagona, which are 1’s. The linear map corresponding to this matrix is the
map:

T (x1, . . . xn) = (0, x1, . . . xn−1).

Notice that composing this map with itself k times gives us the map

T k(x1, . . . xn) = T ◦ . . . ◦ T︸ ︷︷ ︸
k compositions

= (0, 0, . . . 0︸ ︷︷ ︸
k zeroes

, x1, . . . xn−k).

In particular, if k = n, this map sends every vector to the all-zeroes vector (0, . . . 0).
Therefore, the matrix corresponding to this vector is the all-zeroes matrix.

As well, if k < n, then this map does not send all vectors to (0, . . . 0). In particular, it
sends ei to ei+k, for any i ≤ n− k, and therefore has corresponding matrix



k zeroes︷ ︸︸ ︷
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1
0 0 0 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 0

  k zeroes

which is in particular not the all-zeroes matrix.

Question. Can you find a pair of matrices A,B such that A ·B 6= B ·A?

Answer. Sure! This property is true for almost any pair of matrices you’d randomly try
(as long as you don’t like “randomly” choosing the identity matrix.) For one example, just
notice that for

A =

1 1 0
0 0 1
1 0 1

 , B =

1 0 0
0 0 1
1 0 0

 ,
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we have

A ·B =

1 1 0
0 0 1
1 0 1

 ·
1 0 0

0 0 1
1 0 0

 =

(1, 1, 0) · (1, 0, 1) (1, 1, 0) · (0, 0, 0) (1, 1, 0) · (0, 1, 0)
(0, 0, 1) · (1, 0, 1) (0, 0, 1) · (0, 0, 0) (0, 0, 1) · (0, 1, 0)
(1, 0, 1) · (1, 0, 1) (1, 0, 1) · (0, 0, 0) (1, 0, 1) · (0, 1, 0)


=

1 0 1
1 0 0
2 0 0

 , and

B ·A =

1 0 0
0 0 1
1 0 0

 ·
1 1 0

0 0 1
1 0 1

 =

(1, 0, 0) · (1, 0, 1) (1, 0, 0) · (1, 0, 0) (1, 0, 0) · (0, 1, 1)
(0, 0, 1) · (1, 0, 1) (0, 0, 1) · (1, 0, 0) (0, 0, 1) · (0, 1, 1)
(1, 0, 0) · (1, 0, 1) (1, 0, 0) · (1, 0, 0) (1, 0, 0) · (0, 1, 1)


=

1 1 0
1 0 1
1 1 0

 .

Question. Can you find a pair of matrices A,B such that A ·B 6= 0, but B ·A = 0?

Answer. Sure! Try

A =

[
0 1
0 0

]
, B =

[
0 0
0 1

]
.

Then

A ·B =

[
0 1
0 0

]
·
[
0 0
0 1

]
=

[
(0, 1) · (0, 0) (0, 1) · (0, 1)
(0, 0) · (0, 0) (0, 0) · (0, 1)

]
=

[
0 1
0 0

]
, and

B ·A =

[
0 0
0 1

]
·
[
0 1
0 0

]
=

[
(0, 0) · (0, 0) (0, 0) · (1, 0)
(0, 1) · (0, 0) (0, 1) · (1, 0)

]
=

[
0 0
0 0

]
.

Question. Can you find a pair of matrices A,B such that B · A is the identity matrix,
while A ·B is not the identity matrix?

Answer. Sure! Try

A =

1 0
0 1
0 0

 , B =

[
1 0 0
0 1 0

]
.

Then

A ·B =

1 0
0 1
0 0

 , ·
[
1 0 0
0 1 0

]
=

(1, 0) · (1, 0) (1, 0) · (0, 1) (1, 0) · (0, 0)
(0, 1) · (1, 0) (0, 1) · (0, 1) (0, 1) · (0, 0)
(0, 0) · (1, 0) (0, 0) · (0, 1) (0, 0) · (0, 0)

 =

1 0 0
0 1 0
0 0 0

 , and

B ·A =

[
1 0 0
0 1 0

]
·

1 0
0 1
0 0

 =

[
(1, 0, 0) · (1, 0, 0) (1, 0, 0) · (0, 1, 0)
(0, 1, 0) · (1, 0, 0) (0, 1, 0) · (0, 1, 0)

]
=

[
1 0
0 1

]
.
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This trick involves heavily using the fact that these are matrices that map to and from
different spaces: A is a matrix that sends vectors in R2 to R3, while B is a matrix that
sends vectors in R3 to R2. If you restrict this to n×n matrices, however, there’s no way to
do this trick! We’ll discuss why this is in a future class.

Question. Can you find an n × n matrix with integer entries such that the following
properties are satisfied?

• The dot product of any row with itself is even.

• The dot product of any two distinct rows is odd.

Answer. For odd n, this is possible: use the matrix
0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0


The dot product of any row with itself is simply the number of 1’s in that row, which is
n− 1, which is even. The dot product of any two different rows gives you n− 2 1’s, because
these rows agree in n− 2 places and have 0’s in the remaining two. This is odd; therefore,
we satisfy our properties!

For even n, things get weirder. It turns out that this is impossible, but it’s relatively
tricky to show this! You need techniques related to finite fields and vector spaces, which
we’ll get into next quarter. . .
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