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Consider the following problem, encountered by countries all over the world:

Problem. Take a set of choices A = {α, β, γ, δ . . .}. Given such a set, a ranking of A
is simply some ordering of the elements of A: for example, one ranking of the set {Yeats,
Emerson, Blake} could be

Yeats > Blake > Emerson.

Call the collection of all possible rankings R.
A voting system C on N voters is simply any function C : RN → R. In other words,

it is a function that takes in any set of N rankings, and uses these rankings to determine
some overall “social preference.”

Some voting systems are better than others. For example, under the choice set { cake,
pie, custard, all-encompassing doom}, a plausible voting system could be the map C :
RN → R,

C(R1, . . . RN ) = (all-encompassing doom > cake > pie > custard).

In other words, our voting system takes in all of the preferences of our voters, completely
ignores those preferences, and instead selects doom as its top-ranked choice (with cake, pie
and custard ordered after doom.)

This is . . . not ideal. In theory, it would be nice if our voting system reflected, in some
way, the desires of our voters! This raises the following question: what are the properties
we want in a voting system?

After some thinking, a legislative body might come up with the following desired pref-
erences:

1. Unanimity: Suppose that every member of our society submits ballots where choice
α is ranked above choice β. Then our voting system C should reflect this choice as
well.

In other words, if (R1, . . . RN ) = ~R ∈ RN is a collection of rankings such that α > β
for each Ri, then α > β should hold for C(~R) as well.

2. Independence of Irrelevant Alternatives: Suppose we have two options α and
β, and the only thing we are concerned with is whether α is ranked above or below
β in the output of our voting system. Then the only information that “matters” for
deciding this information should be each voter’s relative ranking of α to β.

In other words: suppose you hold one election that results in the outcome α > β.
If we hold a second election where each voter’s preference between α and β doesn’t
change — i.e. if you used to support α over β, you still do, and vice-versa — but
maybe your preferences for some other options moves around (i.e. δ moves to the
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top of your list.) This shouldn’t change our results: after all, if no-one’s preferences
between α and β changed, why should changing irrelevant information matter?

Formally speaking, this is the following claim: suppose we have two vectors ~R, ~S such
that for each i, the rankings Ri, Si both agree on the relative ranking of α to β. Then
the relative ranking of α to β in the two results C(~R), C(~S) should be the same.

We call any voting system that satisfies these two properties above “fair.” What are
some “fair” voting systems? Well: if we only have two options we can simply use majority
rule:

Voting system.
(Majority Rule.) Given any collection ~R ∈ RN of rankings on a two-choice set A = {α, β},
we can define the voting system C(~R)→ R as follows:

• If more rankings have α > β than the other way around, output α > β.

• Otherwise, output β > α.

This test passes the unanimity condition (because if everyone prefers α to β, those bal-
lots will outnumber the β > α ballots trivially) and the independence of irrelevant
alternatives condition (because there are no other alternatives to consider.)

For multiple-choice systems, though, the idea as above won’t work literally as written,
as it doesn’t tell us what to do about our non-α, β choices! So: what is a simply-defined
multiple-choice voting system? Well, one approach that has been (sadly) popular through-
out history is the following:

Voting system.
(Dictatorship.) Take any collection ~R ∈ RN of rankings on a choice set A. As well, call
one voter i the dictator. Then, we can define the voting system function C(~R) → R as
follows:

C(~R) = Ri.

In other words, this just looks up what voter i’s preference is and outputs that preference!
Surprisingly, this system satisfies the two requirements of unanimity and irrelevance

of independent alternatives that we asked our systems to satisfy above. If every voter
ranks α > β, then in particular our dictator preferred α to β, and therefore in our output
we have α > β: i.e. we satisfy unanimity. Similarly, if don’t change the relative ranking
of α to β in anyone’s vote, then in particular we don’t change the relative ranking of α
to β in our dictator’s vote, and thus we satisfy the irrelevance of independent alternatives
condition.

Hmm. Can we do better?

Theorem. The only fair voting system on any set of three or more options is a dictatorship.

. . . Um. That’s surprising. We reserve most of its proof for the homework, but give the
start of the proof here:
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Lemma. (The extremal lemma.) Suppose we have some collection of choices A, where A
contains at least three different choices. Pick any choice α ∈ A, and suppose we have a
collection of votes ~R such that in each vote Ri, either α is at the top of the ranking Ri or
at the bottom of the ranking Ri.

Suppose that C : RN → R is a “fair” voting system. Then in the ranking C(~R), the
choice α must either be greater than every other choice, or smaller than every other choices.

Proof. We will proceed by contradiction: in other words, we will suppose for the moment
that there was a collection of votes ~R = (R1, . . . Rn) in which α was always at the top or
the bottom of each vote Ri, and yet somehow in C(~R) we have β > α > γ for two other
options β, γ.

Consider each vote Ri. Notice that by definition we know that α is always at the top or
the bottom of each person’s vote. Now, suppose that we take each vote Ri, and modified it
by placing γ directly above β and moving everything else down one. In other words, if we
had the vote

(α > δ > σ > β > θ > γ > φ),

we would replace it with the vote

(α > δ > σ > γ > β > θ > φ).

Call this modified collection of votes ~R′. Notice that because α is always at the exact
top of bottom of our list, the relative position of α to every other option never changes.
Therefore, by the independence of irrelevant alternatives, because we never changed the
relative ranking of α to β or the relative ranking of α to γ, their rankings in the output of
C never changed: i.e. we still get β > α > γ in C(~R′).

But in ~R′, we have γ > β on everyone’s vote! Therefore, by the unanimity condition
we must have γ > β in our result C(~R′), which contradicts our claim that β > α > γ.

Consequently we have found a contradiction! In other words, if our voting system is
fair, and each individual vote ranks α either first or last, then our voting system must also
rank α either first or last.
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