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Definition

What is the Chinese remainder theorem?

The Chinese remainder theorem is a result about congruence
in number theory and its generalizations in abstract algebra.
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The basic form is about a number n that divided by some
divisors and leaves remainders
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Example

Example: Here we have a look at a basic example.

What is the lowest number n that divided by 3 leaves a
remainder of 2, divided by 5 leaves a remainder of 3 , and
divided by 7 leaves a remainder of 2
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Solution:
Firstly, we need to find a number that can be divided by 5 and 7
and also divided by 3 leaves a remainder of 1 that number is 70

Secondly, we need to find a number that can divided by 3 and 7
and also divided by 5 leaves a remainder of 1 that number is 21

Thirdly, we need to find a number that can be divided by 3 and 5
and also divided by 7 leaves a remainder of 1 that number is 15
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And the number we find is divided by 3 leaves a remainder 2
then 70× 2 = 140
It is also divided by 5 leaves a remainder 3 then we have
21× 3 = 63
Then it is divided by 7 leaves a remainder 2 then we have
15× 2 = 30
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Then 140+63+30=233 because 63 and 30 are all divided by 3
then 233 and 140 have the same remainder divided by 3.
The same thing happened with 233 and 63 divided by 5 and
233 and 30 divided by 7. Then 233 is the number satisfied the
question.
And the lowest common multiple of 3,5,7 are 105 so
233− 105× 2 = 23 is the answer we need to find.
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Principle of the Chinese Remainder Theorem

We suppose that for n ≥ 2, we have m1,m2,m3, ..., < mn which
are coprime to each other.
We suppose M = m1 ×m2 ×m3 × ...×mn
Then we have
M = m1 ×M1 = m2 ×M2 = m3 ×M3 = ... = mn ×Mn
For the following congruences:
x ≡ c1 (mod m1)
x ≡ c2 (mod m2)
...
x ≡ cn (mod mn)
The congruence x ≡ M1a1c1 + M2a2c2 + ...+ Mnancn have
unique positive integer solution. (ai satify Miai ≡ 1 modmi ,
i=1,2,...,n)
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The Chinese remainder theorem in polynomial

We suppose that m1(x),m2(x),...,mn(x) are coprime to each
other, then we can have polynomials a1(x),a2(x),...,an(x)
Then there must exist an polynomial, which satisfy:
f (x) ≡ a1(x) (mod m1(x))
f (x) ≡ a2(x) (mod m2(x))
...
f (x) ≡ an(x) (mod mn(x))
When the degree of f(s) is not higher than m(x)
(m(x) = m1(x)m2(x)...mn(x))
There is only one f(x)
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When mi(x) = X − Bi ∈ Q[x ], i=1,2,...,n,
mi(x) = mi(bi) (mod(x − bi ))
Then
f (x) = a1(x) (mod m1(x − b1))
f (x) = a2(x) (mod m2(x − b2))
...
f (x) = an(x) (mod mn(x − bn))
the degree of f(x) is not higher than n there is only one f(x)
f (x) = ai (mod(x − bi)) is same as f (bi) = ai (i=1,2,...,n)
Then we can have if there are bi(i = 1,2, ...,n) and every bi is
different, and any ai(i = 1,2, ,n) there exist only one f(x) the
degree is lower than n to let f (bi) = ai(i = 1,2, ...,n)
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If we can find the polynomial Mi(x) i=1,2,..., n to let
Mi(x) = 1(modx − bi)) Mi(x) = 0(mod(x−bj)), Mi(x) = 0
(mod(x − bj)) i 6= j
Then we can find f (x) = a1M1(x) + a2M2(x) + + anMn(x)

=

j=1∑
n

aj

i=1∏
n

x − bi

bj − bi
(i 6= j)

This is the Lagrange interpolation polynomial
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Example

Calculate 02 + 12 + 22 + + (n − 1)2

Proof: We suppose the polynomial
f (n) = 02 + 12 + 22 + + (n − 1)2; n states for the number of
terms.
Then we have f(0)=0,f(1)=0,f(2)=1,f(3)=5
Then we can have f(n)=0 ∗M1(n) + 0 ∗M2(n) + 1 ∗M3(n) + 5 ∗
M4(n)=1× (n−0)(n−1)(n−3)

(2−0)(2−1)(2−3)+5 ∗ (n−0)(n−1)(n−2)
(3−0)(3−1)(3−2)

= 1
6(n(n − 1)(2n − 1)
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Example

If the f(x) have the remainder of each x2 + 1, x2 + 2 with
4x + 4,4x + 8
What is the remainder of f(x) divided by (x2 + 1)(x2 + 2)
Solution: f (x) = 4x + 4 mod(x2 + 1)
f (x) = 4x + 8 mod(x2 + 2)
And because x2 + 1 and x2 + 2 are relatively prime
(−1)x2 + 1 + x2 + 2 = 1
Then we can get f(x)=(4x + 4)(x2 + 2) + (4x + 8)(−1)(x2 + 1)
mod(x2 + 1)(x2 + 2)
Then the answer is 4x − 4x2
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Example

If f (x) ≡ 4 mod(x − 1), f (x) ≡ 8 mod(x − 2), f (x) ≡ 16
mod(x − 3)
What is remainder of f(x) divided by (x − 1)(x − 2)(x − 3)?
Solution:Let f (x) = p(x)(x − 1)(x − 2)(x − 3) + r(x)
Degree of r(x) is lower than 3
We can have this from the problem
r(1) = f (1) = 4
r(2) = f (2) = 8
r(3) = f (3) = 16
Then we can get the r(x) =
4× 4(x−2)(x−3)

(1−2)(1−3) + 8× (x−1)(x−3)
(2−1)(2−3) + 16× (x−1)(x−2)

(3−1)(3−2) = 2x2− 2x + 4
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Secret sharing using Chinese Remainder Theorem

A1,A2, ...,An are n relatively prime numbers
If there is integer y that have the remainder of B1,B2, ...,Bn
divided by A1, ...,An.
Then we need to find what Y is.
Let M = A1 × A2 × ...× An
X1 are all the integers that can be divided by A2,A3, ...,An
Y1 are all the integers that can be divided by A2 × ...× An and
leaves remainder of B1 divided by A1.
X2 are all the integers that can be divided by A1 × A2 × ...× An
Y2 are all the integers that can be divided by A1 × A2 × ...× An
and leaves a remainder B2 divided by A2
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Xi are all the integers that can be divided by
A1,A2,Ai − 1,Ai + 1, ...,An
Yi are all the integers that can be divided by
A1,A2,AI − 1,AI + 1,An and leaves a remainder of Bi divided
by Ai
X1 = A2 × A3 × ...× An ×m = M×m

A1

X2 = A1 × A3 × ...× An ×m = M×M
A2

m are any integers
Xn = A1 × A2 × ...× AN − 1×M = M×m

An
If Fi satisfied both Xi and Yi , and Fi is the smallest positive
integer in Yi
Y1 = F1 + A− 1× A2 × ...× An ×M = F1 + M ×m
...
Yn = Fn + A1 × A2 × ...× An ×m = Fn + M ×m
Then Y = Y1 + Y2 + Y3 + ..YN = F1 + F2 + + FN + M ×m
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Let the Y be the cleartext and B1, ...Bn be the ciphertext.
A1, ...An and N be the key.
The steps are like these:
First choose A1, ...An to be the key
Then to calculate product of these numbers M
Third calculate the F1,F2, ...,Fn
Then Y = Y1 + Y2 + ...Yn = F1 + F2 + F3 + ...+ Fn + M ×m
We can have m = Y−(F1+F2++Fn)

M
At last let Y divided by A1, ...An to get the remainders B1, ...Bn
to be the ciphertext.
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Deciphering

We know the ciphertext B1...BN and the key A1...An and N and
calculate the F1...FN
We can get Y by the
Y = Y1 + Y2 + ...Yn = F1 + F2..+ FN + M ×m
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Cleartext X = 200 key= 5,7,11 ciphertext= 1,6
F1 = 231,F2 = 55,F3 = 175
m = 2001− (231 + 55 + 175)(5× 7× 11) = 4 be the other
secret key.
Decipher:
Y = y1 + ..yn = F1 + f2 + ..Fn + M ×m =
221 + 175 + 55 + 5× 7× 11× 4 = 2001
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Thank you

Thanks for listening!!!
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