CCS Discrete Math I	Professor: Padraic Bartlett
Homework 10: The Euclidean Algorithm!	
Due Friday, Week 5	UCSB 2014

Do one of the two problems below!
These problems are both centered around the Euclidean algorithm, which is a method for taking two positive integers $a>b$ and calculating their GCD:

Algorithm. To initialize our algorithm, set $r_{1}=a, r_{2}=b$. Our algorithm will create a sequence of values $r_{1}, r_{2}, r_{3} \ldots r_{k}$, where this last value r_{k} will be the GCD of a, b.

1. Suppose that we have defined our sequence up to r_{i}, r_{i+1}, that $r_{i}>r_{i+1}$, and that $r_{i+1}>0$.
2. If the remainder of r_{i} when divided by r_{i+1} is 0 , quit our algorithm: r_{i+1} is the GCD we were looking for.
3. Otherwise, to define r_{i+2}, simply set it equal to the remainder of r_{i} when divided by r_{i+1}. This always gives us a number smaller than r_{i+1} that is positive, by definition.
4. Go to 1 .

We give an example run of this algorithm for the two values 63, 99:

1. Set $r_{1}=99, r_{2}=63$.
2. The remainder of 99 divided by 63 is 36 ; so set $r_{3}=36$.
3. The remainder of 63 divided by 36 is 27 ; so set $r_{4}=27$.
4. The remainder of 36 divided by 27 is 9 ; so set $r_{5}=9$.
5. The remainder of 27 divided by 9 is 0 ; so our algorithm quits, and says that the GCD of 63 and 99 is 9 .

The algorithm works here, as we can check: because $63=9 \cdot 7$ and $99=9 \cdot 11$, the GCD of 63 and 99 is 9 , as claimed!

1. Prove that this algorithm does work! In other words, show that the GCD of any two numbers a, b can be calculated by the above process.
2. Using the algorithm above, prove the following result:

Theorem. If a, b are two positive integers, then we can find two more integers n, m such that

$$
n a+m b=G C D(a, b)
$$

