CCS Discrete Math I

Homework 16: Elliptic Curves

Due Friday, Week 9
UCSB 2014

Solve one of the following three problems. As always, prove your claims/have fun!

1. In class, we proved that if E is an elliptic curve and P, Q are two distinct points on E such that the line L through P, Q was not vertical, then L intersects E at some third point R. This problem considers what happens if $P=Q$; that is, if we pick a point P and choose L to be the tangent line to E at P !

Proposition. Suppose that P is a point with nonzero y-coördinate on an elliptic curve E given by $y^{2}=x^{3}-a x+b$. Take the tangent line L to E at P. There are two possibilities:

- L intersects E at exactly one other point on the curve. If we graph L by $y=$ $m x+b$, which we can do because at points with nonzero y-coördinate we have shown that the slopes of tangent lines exist and are finite, we have that $p(x)=$ $\left(x^{3}-a x+b\right)-(m x+b)^{2}$ can be factored into something of the form $\left(x-r_{1}\right)^{2}\left(x-r_{2}\right)$, where r_{1} is the x-coördinate of P, and r_{2} is the x-coördinate of the unique other point on the curve we cross.
- L never intersects E at any other points on our curve. If we graph L by $y=$ $m x+b$, we have that $p(x)=\left(x^{3}-a x+b\right)-(m x+b)^{2}$ can be factored into something of the form $\left(x-r_{1}\right)^{3}$, where r_{1} is the x-coördinate of P.

Prove this proposition!
2. In class, Connor asked if the names "elliptical curve" and "ellipse" are related terms. I said that they were in a sense, but didn't know the full reason off the top of my head.
As it turns out, there's actually a beautiful story here! To do this problem, go to
http://www.maa.org/sites/default/files/pdf/upload_library/2/Rice-2013.pdf
and read the attached paper, which explains how these terms are related. Give me a two-three paragraph summary of this paper to solve this problem!
3. Take the elliptic curve E defined by $y^{2}=x^{3}+1$ for this problem.
(a) Show that the only points on this curve that have integer coördinates are $(-1,0),(0, \pm 1),(2, \pm 3)$.
(b) Take these five points, along with the sixth point O that is the "point at infinity" as defined in the notes/in class on Wednesday. Show that these six points, under the point-addition operation defined in class, form a subgroup of the elliptic curve group. Give me a group table for these six points.

