CCS Discrete Math I

Homework 17: Elliptic Curves over Finite Fields Due Friday, Week 10 UCSB 2014

Solve three of the following six problems. As always, prove your claims/have fun! 1. Consider the following three elliptic curves over $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$.

- $y^2 = x^3 x + 1$,
- $y^2 = x^3 4x + 2$,
- $y^2 = x^3 + 2x$.

For each curve, draw the collection of all of its points. (Use separate plots for each curve, as it will be hard to distinguish two of the same curve.)

- 2. Choose any elliptic curve E in $\mathbb{F}_7[x] = (\mathbb{Z}/7\mathbb{Z})[x]$, and throw in the point at infinity \mathcal{O} . Find the group corresponding to this curve!
- 3. Recall, from earlier in the quarter, the following definition: in a group $\langle G, + \rangle$, an element g is said to **generate** that group if we can write any element in the group as just a repeated sum of g's. For example, $\langle \mathbb{Z}/4\mathbb{Z}, + \rangle$ is generated by the element 1, because we can write $1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4 \cong 0 \mod 4$.
 - (a) Find an elliptic curve that is generated by one element.
 - (b) Find an elliptic curve that is not generated by any one element.
- 4. What is the maximum number of points an elliptic curve over $\mathbb{Z}/5\mathbb{Z}$ can contain? What is the minimum?
- 5. (a) Create a finite field of order 9 using the methods described in class. (That is: find an irreducible polynomial p(t) of degree 2 in $\mathbb{F}_3[t] = (\mathbb{Z}/3\mathbb{Z})[t]$, and then look at $\mathbb{F}_3[t]/p(t)$.) Call this field \mathbb{F}_9 .
 - (b) Consider the elliptic curve E given by all of the points $(x, y) \in \mathbb{F}_9$ that satisfy the equation $y^2 = x^3 + 2x + 2$. Find all of the points in E.
 - (c) Add in a point at infinity \mathcal{O} to E, and form the group table given by adding points in $E \cup \{\mathcal{O}\}$ together.
- 6. In class, we claimed that our elliptic curve operations were well-defined over the finite fields. Prove this! Namely, show that if E is an elliptic curve, then
 - If P, Q are two distinct points on E and the line L through P, Q is not tangent to E at either P, Q, then either L is a vertical line or there is a unique third point of intersection $R \neq P, Q$ between our line and our curve.
 - If P is any point on the curve E and L is the tangent to E through P, then either L is vertical, L goes through E at exactly one other point R, or P is a "triple-tangent:" that is, if we write $L: y = mx + c, E: x^3 - ax + b, P = (r, s)$, we have that $x^3 - ax + b - (mx + c)^2 = (x - r)^3$.