Homework 18: More Elliptic Curves

Due Friday at 11:30am, Finals Week
UCSB 2014

Solve three of the following six problems. Also, this set is extra-credit! This set can be submitted by email if you can't turn it in to my office. Have fun!

1. Consider the following problem: you have a large collection of tangerines. You, being really bored, want to stack them in a pyramid! Specifically, suppose you are stacking them in a square pyramid: that is, your first layer has one tangerine, your second layer has four tangerines, your third layer has nine tangerines, and so on/so forth.

If you have a square number of tangerines that is strictly greater than 1 , is it possible that you can stack all of them in a single pyramid? Or is this impossible for any square? (That is; you cannot stack 9 tangerines in such a pyramid, because our pyramid sizes go $1,5,14,30 \ldots$ Our question is the following: is there some n such that n^{2} is a "pyramidal" number?)
2. In class, we said that a curve like $y^{2}=x^{3}$ is not an elliptic curve, because its derivative at $(0,0)$ was undefined.
A thing you might hope would work: what happens if you just delete the point $(0,0)$? To make this a concrete problem, take the collection of all points (x, y) with $y^{2}=x^{3}$ and $(x, y) \neq(0,0)$ in $\mathbb{Z} / 7 \mathbb{Z}$.
(a) Plot all of the points that are on this curve and not equal to $(0,0)$.
(b) Add in the point at infinity, and try to make a group table. Do you get a group, and/or is our operation + well-defined on these points? Or when you go to add points together, do you sometimes get $(0,0)$?
3. Consider the elliptic curve $y^{2}=x^{3}+7$. Prove that it has no integer solutions. (Hint: look at things mod 4 or $8!$)
4. Like the above: consider the elliptic curve $y^{2}=x^{3}-6$. Prove that it has no integer solutions.
5. Show that the only integral point on the elliptic curve $y^{2}=x^{3}-1$ is $(1,0)$. (Hint: work in $\mathbb{Z}[i]$, and write $x^{3}=y^{2}+1=(y-i)(y+i)$. Show that $y+i, y-i$ are relatively prime, and work from there!)
6. In class, we saw that sometimes an elliptic curve over a finite field could have no points other than \mathcal{O} ! For example, consider $y^{2}=x^{3}+2 x+2$ over $\mathbb{Z} / 3 \mathbb{Z}$. We know that the only squares are $0^{2}=0,1^{2}=1,2^{2} \equiv 1 \bmod 3$. Therefore,

- at $x=0$ the equation $0^{3}+2 \cdot 0+2=2=y^{2}$ has no solutions,
- at $x=1$ the equation $1^{3}+2 \cdot 1+2=5 \equiv 2=y^{2}$ has no solutions, and
- at $x=2$ the equation $2^{3}+2 \cdot 2+2=14 \equiv 2=y^{2}$ has no solutions.

So our curve has no points other than \mathcal{O} !
Find the largest value of p for which this can happen.

