CCS Discrete Math I	Professor: Padraic Bartlett	
	Homework 6: Catalan Numbers	
Due Friday, Week 3		

This problem set is slightly different. Pick two of the six objects below, and show that they each satisfy the recurrence

$$
C_{0}=C_{1}=1, C_{n}=\sum_{k=0}^{n-1} C_{k} C_{(n-1)-k}
$$

1. Take $2 n$ points in the plane, and pair them up by drawing nonintersecting arcs that lie above these points. Let C_{n} denote the total number of such pairs: we draw all of the configurations for $n=3$ below.

Show that the C_{n} 's satisfy our claimed recurrence.
2. Take all of the sequences of integers $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ such that

- $1 \leq a_{1} \leq a_{2} \leq \ldots a_{n}$.
- $a_{i} \leq i$, for every i.

Let C_{n} denote the total number of such sequences of length n : we give all of the length-3 sequences here.

$$
(1,1,1),(1,1,2),(1,1,3),(1,2,2),(1,2,3)
$$

Show that the C_{n} 's satisfy our claimed recurrence.
3. A stairstep of height n is made by stacking a 1×1 block on top of a 1×2 block on top of a $\ldots 1 \times n$ block, to give us one of the diagrams below. A tiling of a stairstep by n rectangles is a way to cover one of these stairsteps with $k \times l$ rectangles, so that every block is covered and no block is covered twice. Let C_{n} denote the total number of coverings of a stairstep of height n with n rectangles: we draw the fourteen tilings of stairsteps of height 4 below.

Show that the C_{n} 's satisfy our claimed recurrence.
4. A valid coin-stacking is any way to stack circles as drawn below, so that the bottom row consists of n consecutive coins. Let C_{n} denote the total number of valid coinstackings such that the bottom row consists of n consecutive coins: we draw all of the configurations for $n=3$ below.

Show that the C_{n} 's satisfy our claimed recurrence.
5. A multiset is a set where we allow elements to be picked multiple times. We call a multiset that is a subset of $\mathbb{Z} /(n+1) \mathbb{Z}$ nullifying if adding all of its elements together gives us zero $\left(\bmod n+1\right.$.) Let C_{n} denote the total number of n-element nullifying multisets of elements in $\mathbb{Z} /(n+1) \mathbb{Z}$. Here are all of these multisets counted by C_{3} :

$$
\{0,0,0\},\{0,1,3\},\{0,2,2\},\{1,1,2\},\{2,3,3\} .
$$

6. Take all of the sequences of integers $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ such that

- $a_{i} \leq 1$ for every i.
- Each of the partial sums $\sum_{n=1}^{k} a_{i}$ is positive, for each $1 \leq k \leq n$.

Let C_{n} denote the total number of such sequences of length $n-1$: we give all of the sequences for C_{3} here.

$$
(0,0),(0,1),(1,-1),(1,0),(1,1)
$$

Show that the C_{n} 's satisfy our claimed recurrence.

