Homework 8: The Symmetric Group

Due Friday, Week 4 UCSB 2014

This problem set is different. Do the one problem on this set! (It's an important enough problem that I want you to do just this one question, instead of the typical $\binom{n}{k}$-style we've used so far.)

1. In class, we showed that you can write any element of S_{n} as a product of transpositions: that is, permutations of the form ($a b$) for distinct $a, b \in\{1, \ldots n\}$. However, there are many ways to write the same permutatuon $\sigma \in S_{n}$ as a product of transpositions: for example, we have

$$
(123)=(13)(12) \text { and }(123)=(12)(23),
$$

because

is the same as both

Suppose that $\sigma \in S_{n}$ is a permutation that can be written as a product of an odd number of transpositions. Prove that it cannot also be written as a product of a even number of transpositions.
(In this sense, the parity of the number of transpositions used to create any permutation $\sigma \in S_{n}$ is an invariant for that permutation.)

