
CCS Discrete Math I Professor: Padraic Bartlett

Homework 9: Groups

Due Friday, Week 5 UCSB 2014

Do three of the six problems below!

1. When we defined a group in class, we used the following definition:

Definition. A group 〈G, ·〉 is any set G along with a binary operation · : G×G→ G
that satisfies the following three properties:

i. Left identity: there is some identity element e ∈ G such that for any other
g ∈ G, we have e · g = g.

ii. Right inverses: for any g ∈ G, there is some g−1 such that g · g−1 = e, where
e is some identity element.

iii. Associativity: for any three a, b, c ∈ G, a · (b · c) = (a · b) · c.

However, there are additional properties people usually ask for, like the following:

iv. Uniqueness of the identity: if e1, e2 are two elements that satisfy the identity
property, then e1 = e2.

v. Left and right identity: if e is an identity, then for any g ∈ G, g · e = e ·g = g.

vi. Left and right inverses: For any g ∈ G, there is a inverse element g−1 ∈ G
such that g · g−1 = g−1 · g = e, where e is the unique inverse element.

On its face, our first definition of a group doesn’t look like it necessarily satisfies these
three properties!

In this problem, you are challenged to do exactly one of the following:

(a) Prove that anything satisfying properties i-iii satisfies properties iv-vi. In other
words, using just properties i-iii and logic, show that iv-vi must hold.

(b) Prove that properties i-iii do not satisfy properties iv-vi. Any such proof here
would almost surely need to consist of a concrete counterexample, that would
satisfy the first 3 properties but fail the other three.

2. Suppose that p is a prime number. Prove that (p− 1)! ≡ −1 mod p.

3. Definition. A latin square of order n is a n×n array filled with n distinct symbols
(usually {1, . . . n}, but they could be any set of N distinct symbols), such that no
symbol is repeated twice in any row or column.

Here are all of the latin squares of order 2:

1 2

2 1

2 1

1 2
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Here is a Latin square of order 4:

2 1 4 3

1 2 3 4

3 4 1 2

4 3 2 1

(a) Take any finite group 〈G, ·〉 of order n. Make a group table for G (as defined
in class/the notes.) Show that this table is a Latin square of order n.

(b) Does the converse hold? That is: is it true that every Latin square corresponds
to some group table of some group G? Or is there some Latin square that cannot
correspond to any group table of any group?

4. Suppose that G is a set with a binary operation · that has the following properties:

• Associativity.

• Left cancellation: For any a, b, c ∈ G, if a · b = a · c, then b = c.

• Suspicious1: There exists some element a ∈ G such that for any x ∈ G, we have
x3 = axa.

Show that G is an abelian group. (Abelian means commutative, which means “For
all x, y ∈ G, x · y = y · x.”)

5. The free group on n generators a1, . . . an, denoted

〈a1, . . . an〉,

is the following group:

• The elements of the group are all of the finite-length strings of the form

a±1
i1

a±1
i2

a±1
i3

a±1
i4

. . . a±1
il

where the indices i1, . . . il are all between 1 and n, with possible repetitions.

• We denote the “string of length zero, the “empty string,” with the symbol e.

• Given two strings s1, s2, we concatenate these two strings into the word s1s2
by writing the string that consists of the string s1 followed by the string s2.

• Finally, if we ever have an a+1a−1 or an a−1a+1 occurring next to each other in
a string, we simply remove those two elements from our string.

(a) Prove that this is a group!

(b) Consider the free group on one generator, 〈a〉. Prove that this group is isomorphic
to the integers under addition.

1As always, I made up any particularly strange words.
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6. In our above discussion, we have primarily defined groups by giving a set and an
operation on that set. There are other ways of defining a group, though!

Definition. A group presentation is a collection of n generators a1, . . . an and m
words R1, . . . Rm from the free group 〈a1, . . . an〉, which we write as

〈a1, . . . an | R1 = e, . . . Rm = e〉.

We associate this presentation with the group defined as follows:

• Start off with the free group 〈a1, . . . an〉.
• Now, declare that within this free group, the words R1, . . . Rm are all equal to

the empty string e: i.e. if we have any words that contain some Ri as a substring,
we can simply “delete” this Ri from the word.

Example. Consider the group with presentation

〈a | an = e〉,

where we let an denote the string consisting of n a’s in a row. Notice that this is the
collection of all words written with one symbol a, where we regard an = e: i.e. it’s
just

e, a, a2, a3, . . . an−1.

This is because given any string ak ∈ 〈a〉, we have ak = al for any k ≡ l mod n. This
is because we can simply concatenate copies of the strings an, a−n as many times as
we want without changing a string, as an = e!

(a) Show that 〈a | an = e〉 is isomorphic to the group given by Z/nZ with respect
to addition.

(b) Describe D8, the collection of symmetries of a square, via a group presentation.
(In other words, create a group with presentation that is isomorphic to D8.)
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