CCS Discrete Math I
Professor: Padraic Bartlett

Homework 9: Groups

Due Friday, Week 5 UCSB 2014

Do three of the six problems below!

1. When we defined a group in class, we used the following definition:

Definition. A group $\langle G, \cdot\rangle$ is any set G along with a binary operation $\cdot: G \times G \rightarrow G$ that satisfies the following three properties:
i. Left identity: there is some identity element $e \in G$ such that for any other $g \in G$, we have $e \cdot g=g$.
ii. Right inverses: for any $g \in G$, there is some g^{-1} such that $g \cdot g^{-1}=e$, where e is some identity element.
iii. Associativity: for any three $a, b, c \in G, a \cdot(b \cdot c)=(a \cdot b) \cdot c$.

However, there are additional properties people usually ask for, like the following:
iv. Uniqueness of the identity: if e_{1}, e_{2} are two elements that satisfy the identity property, then $e_{1}=e_{2}$.
v. Left and right identity: if e is an identity, then for any $g \in G, g \cdot e=e \cdot g=g$.
vi. Left and right inverses: For any $g \in G$, there is a inverse element $g^{-1} \in G$ such that $g \cdot g^{-1}=g^{-1} \cdot g=e$, where e is the unique inverse element.

On its face, our first definition of a group doesn't look like it necessarily satisfies these three properties!
In this problem, you are challenged to do exactly one of the following:
(a) Prove that anything satisfying properties i-iii satisfies properties iv-vi. In other words, using just properties i-iii and logic, show that iv-vi must hold.
(b) Prove that properties i-iii do not satisfy properties iv-vi. Any such proof here would almost surely need to consist of a concrete counterexample, that would satisfy the first 3 properties but fail the other three.
2. Suppose that p is a prime number. Prove that $(p-1)!\equiv-1 \bmod p$.
3. Definition. A latin square of order n is a $n \times n$ array filled with n distinct symbols (usually $\{1, \ldots n\}$, but they could be any set of N distinct symbols), such that no symbol is repeated twice in any row or column.
Here are all of the latin squares of order 2:

1	2			
2	1	\quad	2	1
:---	:---			
1	2			

Here is a Latin square of order 4:

2	1	4	3
1	2	3	4
3	4	1	2
4	3	2	1

(a) Take any finite group $\langle G, \cdot\rangle$ of order n. Make a group table for G (as defined in class/the notes.) Show that this table is a Latin square of order n.
(b) Does the converse hold? That is: is it true that every Latin square corresponds to some group table of some group G ? Or is there some Latin square that cannot correspond to any group table of any group?
4. Suppose that G is a set with a binary operation \cdot that has the following properties:

- Associativity.
- Left cancellation: For any $a, b, c \in G$, if $a \cdot b=a \cdot c$, then $b=c$.
- Suspicious ${ }^{1}$: There exists some element $a \in G$ such that for any $x \in G$, we have $x^{3}=a x a$.

Show that G is an abelian group. (Abelian means commutative, which means "For all $x, y \in G, x \cdot y=y \cdot x . ")$
5. The free group on n generators $a_{1}, \ldots a_{n}$, denoted

$$
\left\langle a_{1}, \ldots a_{n}\right\rangle
$$

is the following group:

- The elements of the group are all of the finite-length strings of the form

$$
a_{i_{1}}^{ \pm 1} a_{i_{2}}^{ \pm 1} a_{i_{3}}^{ \pm 1} a_{i_{4}}^{ \pm 1} \ldots a_{i_{l}}^{ \pm 1}
$$

where the indices $i_{1}, \ldots i_{l}$ are all between 1 and n, with possible repetitions.

- We denote the "string of length zero, the "empty string," with the symbol e.
- Given two strings s_{1}, s_{2}, we concatenate these two strings into the word $s_{1} s_{2}$ by writing the string that consists of the string s_{1} followed by the string s_{2}.
- Finally, if we ever have an $a^{+1} a^{-1}$ or an $a^{-1} a^{+1}$ occurring next to each other in a string, we simply remove those two elements from our string.
(a) Prove that this is a group!
(b) Consider the free group on one generator, $\langle a\rangle$. Prove that this group is isomorphic to the integers under addition.

[^0]6. In our above discussion, we have primarily defined groups by giving a set and an operation on that set. There are other ways of defining a group, though!

Definition. A group presentation is a collection of n generators $a_{1}, \ldots a_{n}$ and m words $R_{1}, \ldots R_{m}$ from the free group $\left\langle a_{1}, \ldots a_{n}\right\rangle$, which we write as

$$
\left\langle a_{1}, \ldots a_{n} \mid R_{1}=e, \ldots R_{m}=e\right\rangle .
$$

We associate this presentation with the group defined as follows:

- Start off with the free group $\left\langle a_{1}, \ldots a_{n}\right\rangle$.
- Now, declare that within this free group, the words $R_{1}, \ldots R_{m}$ are all equal to the empty string e : i.e. if we have any words that contain some R_{i} as a substring, we can simply "delete" this R_{i} from the word.

Example. Consider the group with presentation

$$
\left\langle a \mid a^{n}=e\right\rangle,
$$

where we let a^{n} denote the string consisting of $n a$'s in a row. Notice that this is the collection of all words written with one symbol a, where we regard $a^{n}=e$: i.e. it's just

$$
e, a, a^{2}, a^{3}, \ldots a^{n-1}
$$

This is because given any string $a^{k} \in\langle a\rangle$, we have $a^{k}=a^{l}$ for any $k \equiv l \bmod n$. This is because we can simply concatenate copies of the strings a^{n}, a^{-n} as many times as we want without changing a string, as $a^{n}=e$!
(a) Show that $\left\langle a \mid a^{n}=e\right\rangle$ is isomorphic to the group given by $\mathbb{Z} / n \mathbb{Z}$ with respect to addition.
(b) Describe D_{8}, the collection of symmetries of a square, via a group presentation. (In other words, create a group with presentation that is isomorphic to D_{8}.)

[^0]: ${ }^{1}$ As always, I made up any particularly strange words.

