CCS Discrete Math I

Homework 9: Groups

Due Friday, Week 5

UCSB 2014

Do three of the six problems below!

1. When we defined a group in class, we used the following definition:

Definition. A group $\langle G, \cdot \rangle$ is any set G along with a binary operation $\cdot : G \times G \to G$ that satisfies the following three properties:

- i. Left identity: there is some identity element $e \in G$ such that for any other $g \in G$, we have $e \cdot g = g$.
- ii. **Right inverses**: for any $g \in G$, there is some g^{-1} such that $g \cdot g^{-1} = e$, where e is some identity element.
- iii. Associativity: for any three $a, b, c \in G$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

However, there are additional properties people usually ask for, like the following:

- iv. Uniqueness of the identity: if e_1, e_2 are two elements that satisfy the identity property, then $e_1 = e_2$.
- v. Left and right identity: if e is an identity, then for any $g \in G$, $g \cdot e = e \cdot g = g$.
- vi. Left and right inverses: For any $g \in G$, there is a inverse element $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$, where e is the unique inverse element.

On its face, our first definition of a group doesn't look like it necessarily satisfies these three properties!

In this problem, you are challenged to do exactly one of the following:

- (a) Prove that anything satisfying properties i-iii satisfies properties iv-vi. In other words, using just properties i-iii and logic, show that iv-vi must hold.
- (b) Prove that properties i-iii **do not** satisfy properties iv-vi. Any such proof here would almost surely need to consist of a concrete counterexample, that would satisfy the first 3 properties but fail the other three.
- 2. Suppose that p is a prime number. Prove that $(p-1)! \equiv -1 \mod p$.
- 3. Definition. A latin square of order n is a $n \times n$ array filled with n distinct symbols (usually $\{1, \ldots n\}$, but they could be any set of N distinct symbols), such that no symbol is repeated twice in any row or column.

Here are all of the latin squares of order 2:

1	2	2	1
2	1	1	2

Here is a Latin square of order 4:

2	1	4	3
1	2	3	4
3	4	1	2
4	3	2	1

- (a) Take any finite group $\langle G, \cdot \rangle$ of order *n*. Make a **group table** for *G* (as defined in class/the notes.) Show that this table is a Latin square of order *n*.
- (b) Does the converse hold? That is: is it true that every Latin square corresponds to some group table of some group G? Or is there some Latin square that cannot correspond to any group table of any group?
- 4. Suppose that G is a set with a binary operation \cdot that has the following properties:
 - Associativity.
 - Left cancellation: For any $a, b, c \in G$, if $a \cdot b = a \cdot c$, then b = c.
 - Suspicious¹: There exists some element $a \in G$ such that for any $x \in G$, we have $x^3 = axa$.

Show that G is an abelian group. (Abelian means **commutative**, which means "For all $x, y \in G, x \cdot y = y \cdot x$.")

5. The **free group** on n generators $a_1, \ldots a_n$, denoted

$$\langle a_1, \ldots a_n \rangle$$
,

is the following group:

• The elements of the group are all of the finite-length strings of the form

$$a_{i_1}^{\pm 1} a_{i_2}^{\pm 1} a_{i_3}^{\pm 1} a_{i_4}^{\pm 1} \dots a_{i_l}^{\pm 1}$$

where the indices $i_1, \ldots i_l$ are all between 1 and n, with possible repetitions.

- We denote the "string of length zero, the "empty string," with the symbol e.
- Given two strings s_1, s_2 , we **concatenate** these two strings into the word s_1s_2 by writing the string that consists of the string s_1 followed by the string s_2 .
- Finally, if we ever have an $a^{+1}a^{-1}$ or an $a^{-1}a^{+1}$ occurring next to each other in a string, we simply remove those two elements from our string.
- (a) Prove that this is a group!
- (b) Consider the free group on one generator, $\langle a \rangle$. Prove that this group is isomorphic to the integers under addition.

¹As always, I made up any particularly strange words.

6. In our above discussion, we have primarily defined groups by giving a set and an operation on that set. There are other ways of defining a group, though!

Definition. A group presentation is a collection of n generators $a_1, \ldots a_n$ and m words R_1, \ldots, R_m from the free group $\langle a_1, \ldots, a_n \rangle$, which we write as

$$\langle a_1, \dots a_n \mid R_1 = e, \dots R_m = e \rangle$$

We associate this presentation with the group defined as follows:

- Start off with the free group $\langle a_1, \ldots a_n \rangle$.
- Now, declare that within this free group, the words $R_1, \ldots R_m$ are all equal to the empty string e: i.e. if we have any words that contain some R_i as a substring, we can simply "delete" this R_i from the word.

Example. Consider the group with presentation

$$\langle a \mid a^n = e \rangle,$$

where we let a^n denote the string consisting of n a's in a row. Notice that this is the collection of all words written with one symbol a, where we regard $a^n = e$: i.e. it's just

$$e, a, a^2, a^3, \dots a^{n-1}.$$

This is because given any string $a^k \in \langle a \rangle$, we have $a^k = a^l$ for any $k \equiv l \mod n$. This is because we can simply concatenate copies of the strings a^n, a^{-n} as many times as we want without changing a string, as $a^n = e!$

- (a) Show that $\langle a \mid a^n = e \rangle$ is isomorphic to the group given by $\mathbb{Z}/n\mathbb{Z}$ with respect to addition.
- (b) Describe D_8 , the collection of symmetries of a square, via a group presentation. (In other words, create a group with presentation that is isomorphic to D_8 .)