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We don’t know where the constants came from in the first
place. We only know that whoever came up with them
could have the key to this backdoor. And we know there’s
no way for NIST – or anyone else – to prove otherwise.

This is scary stuff indeed.

Bruce Schneier, cryptographer

1 Elliptic Curve Cryptography

1.1 Diffie-Hellman for elliptic curves.

When we discussed modern cryptographical systems in week 5, the main method that we
studied was Diffie-Hellman. We implemented this cryptosystem as follows:

Algorithm. Suppose that we have two people, Alice and Bob, that want to communicate
over a public network.

Ahead of time, Alice and Bob agree on a public base prime p (in practice, a 300+ digit
prime) to work in, as well as a public seed g (usually 2, 3 or 5, depending on some small
silly things that are tricky to go into.) All calculations from here on out are now done in
Z/pZ.

From there, Alice and Bob each pick a “secret key” a, b from Z. They then do the
following:

1. Alice sends the number ga publicly to Bob.

2. Bob then takes this received number ga and uses his key to raise it to the b-th power,
which gives him gab.

3. Bob then sends the number gb publicly to Alice.

4. Alice then takes this received number gb and uses her key to raise it to the a-th power,
which gives her gab.

5. Bob and Alice are now both in possession of the same secret key gab. Any eaves-
droppers will only have heard ga and gb, and thus have no obvious way to figure out
gab.

6. To communicate a message m ∈ Z/pZ, then, either Alice or Bob can send to the
other party m · gab. No other parties know the secret key, so they cannot decode this
message.
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7. Moreover, because both Alice and Bob know the secret key gab, along with the values
ga, gb, they can calculate g−ab via

(ga)(p−1)−b = ga(p−1)−ab = ga(p−1) · g−ab =
(
gp−1

)a · g−ab = g−ab,

because by Fermat’s little theorem, we know that

gp−1 ≡ 1 mod p.

Alice, using a, p, and gb, can do the same trick as well; this allows both people to read
their messages!

Fun fact: this works with any abelian group! In fact, we can make this work for the
group associated to any elliptic curve E as follows:

Algorithm. This time, Alice and Bob agree on a public curve E and some point P ∈ E;
as well, Alice and Bob each still pick a “secret key” a, b from Z. They then do the following:

1. Alice calculates the point aP =

a times︷ ︸︸ ︷
P + P + . . . + P , and sends this publicly to Bob.

2. Bob then takes aP and adds it to itself b times to get abP .

3. Bob calculates bP and sends this point publicly to Alice.

4. Alice then takes bP and adds it to itself a times to get abP .

5. Bob and Alice are now both in possession of the same secret key abP . Any eaves-
droppers will only have heard aP and bP , and thus have no obvious way to figure out
abP .

6. To communicate a message m, determine some way of encoding a message m as a
point M ∈ E, and have our our messaging party send M + abP to the other

7. Because the inverse of any point abP is found by simply flipping the y-coördinate,
it is easy for both Alice and Bob to calculate −abP ; so they can both decode these
messages! (In particular, this saves us the Fermat’s last theorem exponentiation and
work of the earlier method.)

The reason that both of these methods “work,” in a sense, is because the discrete
logarithm problem, described earlier, is a “hard” problem to solve:

Problem. The discrete logarithm problem is the following task: Suppose you’re given
a pair of numbers a, b in Z mod pZ. The discrete logarithm problem asks the user for a
value k such that

ak ≡ b mod p,

if some such value exists.
More generally: suppose we have some group G with an element g ∈ G. Suppose we are

given ga for some a ∈ Z; the discrete logarithm problem is the task of finding a with only
the knowledge of g and ga.
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One naive algorithm that you might be tempted to try is simply raising a to higher and
higher powers, and then reducing mod p each time until you got something that is equal
to b. However, this takes a hideously long time to run: if we just take values of k starting
at 1 and going up, we’re effectively looking through the elements of Z/pZ one at a time,
in the order a, a2, a3 . . .. If we assume that b is chosen more or less at random, then we’d
expect to find b after going through about half of Z/pZ (and in the worst-case after going
through all of Z/pZ.) In either case, we have runtime that is linear in the size of the group!
Therefore, if our group has say 300 digits (like we have for the size of prime requested in
the algorithm above,) our algorithm has runtime that’s absolutely awful (i.e. exponential
in the number of digits in the size of the group.)

There, however, are better algorithms! This, in fact, is one of the reasons that we are
widely moving to elliptic curve cryptography over methods like Diffie-Hellman over finite
fields or RSA or other methods; while we do not have a polynomial-time algorithm to solve
the discrete logarithm problem for Z mod pZ, we do have methods that are much faster
than you might suspect! To illustrate one way to solve the discrete logarithm problem for
Z/pZ, called the index calculus, we make the following definition:

Definition. Take any prime p and any g ∈ Z/pZ. Suppose that there are values a ∈
Z/pZ, h ∈ Z/pZ such that ga = h. We then define the discrete logarithm L over Z/pZ
with respect to g by L(h) = a.

Notice that just like how normal logs transformed multiplication1 into addition, the
discrete log does this as well: for any two h1, h2 such that ga1 = h1, g

a2 = h2, we have

L(h1h2) = L(ga1+a2) = a1 + a2 = L(ga1) + L(ga2) = L(h1) + L(h2).

Algorithm. Eve is eavesdropping on two people, Alice and Bob, who are communicating
using Diffie-Hellman over a finite field. Thus far through Alice and Bob’s communication,
Eve has seen ga by wiretapping Alice’s sent communications, and knows g,Z/pZ because
these two pieces of information are publicly known.

Eve now wants the ability to “impersonate” Alice: that is, given ga, a, and p, she wants
the ability to find a. She can do this via the index calculus, as defined here:

1. At first, Eve will pick out some list of small primes p1 = 2, p2 = 3, . . . pr, ranging from
2 up to the r-th prime number. It is remarkably difficult to describe what the optimal
choice of r is here (see this link and this link for some discussion that demonstrates
how hard, and in some senses still open, this question is!).

Call this collection of small primes the factor base for our calculations.

2. Now, repeatedly take random powers of g. For each such random power gm, factor
the resulting number into primes. If you ever get a result like

gm = pk1i1 . . . p
kj
ij
,

for some collection of prime pi1 , . . . pij all in our factor base, write this equation down.
Notice that if we take discrete logarithms of both sides, we get

m = L(gj) = L(pk1i1 . . . p
kj
ij

) = k1L(pi1) + k2L(pi2) + . . . + kjL(pij ).

1To be explicit, log(ab) = log(a) + log(b) is the property we’re referring to here.
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In other words, we have a linear equation involving j of our factor base primes!

Keep doing this process until you get enough linear equations to solve for the discrete
logarithms of our factor base primes. Again, it is hard / in some senses open to
determine about how many times you will need to do this process, but you can do it!

3. Take your collection of linear equations for the L(pj)’s, and solve for all of them! We
now know L(pj) for every pj in our factor base.

4. Finally: take ga, which it is given that we know. Repeatedly pick out random values
m ∈ Z/pZ, calculate gm · ga, and factor the result into primes. Suppose that at some
step we eventually get that gm · ga factors into some product of the “small” primes in
our factor base: then we have

gm · ga = pk1i1 . . . p
kj
ij

⇒ L(gm · ga) = L(pk1i1 . . . p
kj
ij

)

⇒ m + a = k1L(pi1) + k2L(pi2) + . . . + kjL(pij )

⇒ a = k1L(pi1) + k2L(pi2) + . . . + kjL(pij )−m.

We know all of the L(pi)’s from step 3; therefore we’ve solved for a!

This is overly abstract as described above; so let’s calculate an example!

Example. Suppose that two parties Alice, Bob are communicating using finite-field Diffie-
Hellman where p = 101 and g = 2. Suppose that we’ve intercepted 2a = 83. Can we find
a?

To solve this, we use the index calculus method. We start by fixing a collection of small
primes, say {2, 3, 5, 7}. From here, we calculate small values of 2m for various values of m,
highlighting only those results that are products of elements in our factor base.

21 = 2 , 22 = 4, 27 = 33 ,

28 = 2 · 33, 29 = 7 , 213 = 11,

217 = 3 · 52 , 218 = 72, 221 = 89,

222 = 7 · 11, 223 = 53, 224 = 5 .

We now use these equations to solve for L(2), L(3), L(5), L(7)!
One important wrinkle to note here is that all of the arithmetic done to solve these linear

equations is not done in Z/101Z, as you might expect, but rather Z/100Z! To see why this
is true, notice that because 101 is prime, we have that (Z/101Z)× is a multiplicative group
with 100 elements (namely, all of the numbers in Z/101Z except for 0.) We know that for
any group of order n and any element g in that group, gn = id by Fermat’s little theorem!
Therefore, 2100 = 1 = 20, and therefore for any x we have 2100+x = 21002x = 2x.
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So, if we’re working with the subgroup of Z/100Z generated by all of the elements of the
form 2x for some x, we have that 2x = 2y whenever x ≡ y mod 100! For our logarithms in
particular, this means that if we have an equation like

7 = L(27) = L(27) = L(33) = 3L(3),

we’re really talking about

27 = 23L(3),

and therefore want to handle our multiplication/division/etc mod 100! In particular, this
tells us here that 3L(3) ≡ 7 mod 100. We can solve this in this case; because 3 and 100
are relatively prime, we know that there is a multiplicative inverse of 3 in Z/100Z, namely
67, because 3 · 67 = 101 ≡ 1 mod 100. Therefore, we know that

67 · 3L(3) ≡ L(3) ≡ 67 · 7 ≡ 69 mod 100,

and therefore that L(3) should be 69. Checking via calculator verifies that this works!
From our highlighted equations, we can deduce that

L(2) = 1, L(3) = 69, L(7) = 9, L(5) = 24.

From here, our lives are not too hard. We simply calculate values of 2m · 83 until we get
something that is a product of primes in our factor basis:

22 · 83 = 29, 23 · 83 = 2 · 29, 24 · 83 = 3 · 5 .

Taking logs here gives us that

L(24 · 83) = L(3 · 5)

⇒ 4 + L(83) = L(3) + L(5)

⇒ L(83) = 69 + 24− 4 ≡ 89 mod 100,

and therefore that 289 = 83. Success!

This algorithm, with appropriate choices of factor base, runs in time O(e
√

2 ln(p) ln(ln(p))).
We can’t prove this here, because we can’t even quite say what the best choice of factor
base is without a lot more machinery; but the relevant thing to take away here is that
this growth rate is slower than exponential in the number of digits in p (that is, ln(p)!)
It’s still growing faster than any polynomial (check this if you don’t believe it!), but it is
much smaller than say p = eln(p), the runtime of our “brute-force” algorithm from before.
In practice, this forces us to want to use primes p that are about 300 digits long or so
for finite-field Diffie-Hellman to get an acceptable level of security. (If our best-known
algorithm was the brute-force algorithm, then we could get away with just 60-digit primes,

as e60 ∼ O(e2
√

300 ln(300).)
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Also, it’s worth noting that when we run the algorithm above, the first three steps are
“pre-computable:” that is, we can do them without knowing ga! So, if someone uses the
above algorithm to the discrete log problem for a given p, ga, they’ve actually done almost
all of the work for any ga! This is perhaps worrisome; not only can we solve this problem
in not-completely-awful amounts of time, once it’s solved we’ve solved it for pretty much
all keys in the field, instead of just for one!

These observations are perhaps the best motivation for elliptic curve cryptography that
exist. Unlike finite fields, there is no known algorithm for solving the discrete logarithm
problem for arbitrary elliptic curves that runs in sub-exponential time like the above! In
fact, the best that most algorithms can do for an elliptic curve over Fp is (roughly) just√
p = eln(p)/2, which is far smaller than the index calculus’s runtime; to get equivalent

security to a 300-digit prime there, we just need to use a 120-digit prime!
We illustrate one method for solving the discrete logarithm problem, called the “baby-

step, giant-step” algorithm, here:

Algorithm. Suppose that we have any arbitrary finite group G of order n, any base
element g ∈ G, and an element h ∈ G that we know is of the form ga for some a ∈ Z. This
algorithm illustrates one process for finding2 a given this information.

1. Let m = d
√
ne. Calculate 1, g, g2, g3, . . . gm−1, and record all of these values in a table

that we can quickly look up elements in.

2. Now, for each j ∈ {0, 1, . . .m− 1}, calculate the value

h · g−mj ,

and check to see if it shows up in our table of precomputed values.

3. If this happens, then there is some i, j such that

gi = h · g−mj ⇒ h = gi+mj ,

and therefore that we’ve solved our discrete logarithm problem!

The only point to wonder about with the above algorithm is why it must work. This
is fairly simple: because the group G is of order n, notice that we can assume that a ∈
{0, 1, . . . n−1} without losing any generality, as Fermat’s little theorem tells us that gn = id
whenever n is the order of the group. From here, notice that we can write any number a
from 0 to m2− 1 ≥ n− 1 in the form i+ j ·m, by just looking at its quotient and remainder
when divided by m. The process above goes through all pairs i+j ·m; consequently it must
eventually find our number!

2Strictly speaking, this finds a modulo the order of the element g. This is because if the order of g is m,
then gm = g0, and thus we cannot tell gx+m from gx.
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Again, to give a feel for this algorithm, we calculate an example:

Example. Take the elliptic curve E consisting of the collection of points in F2
5 = (Z/5Z)2

such that y2 = x3 + 2x + 1, that we studied last week:

1 2 3 4

1

2

3

4

o
a

b

c

d

e

f

Suppose that we take c as our generator, and we want to solve the discrete logarithm
problem for n · c = e. What is n? (Note that we are using multiplication instead of
exponentiation; this is because our group operation here is now + instead of ·, and so

repeated applications of c to itself look like

n times︷ ︸︸ ︷
c + c + . . . + c = nc.)

To answer this, we first recall the group table we calculated last week:

+ O a −a c −c e −e
O O a −a c −c e −e
a a −c O −a −e c e

−a −a O c e c −e −c
c c −a e −e O −c a

−c −c −e c O e a −a
e e c −e −c a −a O
−e −e e −c a −a O c

To perform the little-step big-step algorithm here, we proceed as follows:

1. (Little-step.) Our group is size 7, so we set m = d
√

7e = 3 and precalculate 0c =
O, 1c = c, and 2c = −e.

2. (Big-step.) Now, we repeatedly calculate e+ (jm)c for values of j ∈ {0, 1, 2}, until we
get an entry in our list:

e− (0 · 3)c = e

e− (1 · 3)c = e− a = −e

3. (Conclusion.) Therefore, we have 2c = e − 3c, which implies e = 5c, and thus that
n = 5. Success!

Cryptography! As you probably expect, there is a lot more depth you could go into
when studying these problems. Write me for book references if you want to go further here!
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