
CCS Discrete Math I Professor: Padraic Bartlett

Lecture 2: Generating Functions

Week 2 UCSB 2014

1 Generating Functions

1.1 Power series: a crash course/refresher.

If you’ve taken Calculus BC or an equivalent class in high school, you’ve probably ran into
power series before. In case you haven’t, here’s a quick definition:

Definition. Suppose we have a sequence {an}∞n=0 = (a0, a1, a2, . . .) of numbers. We can
form the formal power series associated to this sequence as follows:

A(x) =

∞∑
n=0

anx
n.

By a formal power series, we simply mean that we are considering this object above not
as something that is a function of x, but rather as a collection of convenient placeholders to
index our values a1, a2, a3, . . . with. In other words, we’re usually not going to worry about
“plugging in values for x;” instead, we’re going to take this object and just pretend that all
of the xi’s are placeholders that allow us to tell a1 and a2 and a3 and so on apart.

Given a formal power series, we can manipulate it in various ways! For example, we can
scale it by a number:

c ·A(x) =
∞∑
n=0

c · anxn.

We can add two formal power series:

A(x) =
∞∑
n=0

anx
n, B(x) =

∞∑
n=0

bnx
n

⇒ A(x) + B(x) =

∞∑
n=0

(an + bn)xn.

We can define a formal notion of “derivative,” where we replace each xn with nxn−1:

d

dx
A(x) =

∞∑
n=1

an · nxn−1 =

∞∑
n=0

(n + 1)an+1x
n.

We can also take the product of two formal power series! This is a little more involved: to
calculate the power series that is equal to( ∞∑

n=0

anx
n

)
·

( ∞∑
n=0

bnx
n

)
,
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we basically need to do the same process that we used to FOIL polynomials when we were
younger! In other words, we need to take every term on the left, and multiply each one of
those by every term on the right. Because there are infinitely many, this might seem awful
to write down; so, to help, let’s try to restrict ourselves to a somewhat easier problem.
Suppose we want to calculate our product, but we are just trying to figure out how many
xm’s we get on the right-hand side, for some fixed value m. How does this work?

Well: let’s go through the product (
∑∞

n=0 anx
n) · (

∑∞
n=0 bnx

n) term-by-term. If we just
look at the a0x

0 term from the left part, we can see that we’ll have to multiply this by the
bmxm term from the right part to get a xm. Similarly, if we look at a1x

1, we’ll need to
multiply this by bm−1x

m−1 from the right to get to xm; in general, if we’re looking at the
akx

k term on the left, we need to multiply it by bm−kx
m−k to have the result be a multiple

of xm.
Therefore, if we’re trying to find all of the xm’s, we’re actually just calculating the sum(

m∑
k=0

akbm−k

)
xm.

But if we know the coefficients of each xm for every m, that gives us all of the terms in
our product! In other words, we’ve shown the following:

( ∞∑
n=0

anx
n

)
·

( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

(
n∑

k=0

akbn−k

)
xn

So we can multiply power series as well!
In general, we say that two formal power series are equal if and only if each term is

equal: i.e. (
∑∞

n=0 anx
n) = (

∑∞
n=0 bnx

n) if and only if an = bn for all n.

So: if you’ve seen power series before, you may remember that most of the times where
they come up, they’ve been objects where you’ve used your knowledge about how se-
quences work to study them! In other words, your proofs have probably looked like the
following: (

knowledge of {an}∞n=1

)
⇒

(
knowledge of

∞∑
n=1

anx
n

)
.

We typically do this in calculus classes because, usually, we understand sequences better
than we understood power series. However, this is not necessarily true! Given enough time
in calculus/analysis classes, you will develop a lot of intuition for power series and Taylor
series. Given this, it is perhaps natural to ask if we can reverse the method described
above. In other words: suppose that we have a sequence that we want to study. What if
we turned it into a power series, and used our knowledge of how that power series works to
answer questions about the original series? I.e. can we make proofs that look like(

knowledge of

∞∑
n=1

anx
n

)
⇒

(
knowledge of {an}∞n=1

)
?

The answer to this question is a resounding yes! In mathematics, this process is called
the method of generating functions. This works as follows:
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• Take some sequence {an}∞n=1 that you want to study.

• Look at the associated power series
∑∞

n=1 anx
n.

• Find a nice closed form (i.e. like
∑∞

n=0 x
n = 1

1−x) for this power series, using alge-
bra/our operations on power series / clever identities from calculus /etc.

• Use this closed form somehow to regain information about your original sequence. I.e.
your closed form may have a different expansion that you can figure out, via Taylor
series: therefore, because power series are unique, you know that the terms in this dif-
ferent expansion have to be equal to the terms

∑∞
n=1 anx

n in your original expansion!
In other words, you’ve found new information about your sequence {an}∞n=1!

We illustrate this with an example that we’ve studied a bit before:

1.2 Fibonacci numbers.

Example. Recall the Fibonacci sequence:

f0 = 0, f1 = 1, fn = fn−1 + fn−2,∀n ≥ 2.

Using the method of generating functions, can we find a closed-form expression for the
elements fn: i.e .a way of calculating fn without having to find fn−1 and fn−2?

Answer: Let’s use the method of generating functions! Specifically, let’s look at the
power series

∞∑
n=0

fnx
n.

The only thing we know about the constants fn, at first, is their recurrence relation
fn = fn−1 +fn−2. So: let’s plug that in to our power series! Specifically, let’s plug that into
all of the terms fn with n ≥ 2, as those are the terms where this recurrence relation holds:

∞∑
n=0

fnx
n = f0 · x0 + f1 · x2 +

∞∑
n=2

fnx
n

= 0 + x +

∞∑
n=2

(fn−1 + fn−2)x
n

= x +

∞∑
n=2

fn−1x
n +

∞∑
n=2

fn−2x
n

= x + x
∞∑
n=2

fn−1x
n−1 + x2

∞∑
n=2

fn−2x
n−2

= x + x

∞∑
n=1

fnx
n + x2

∞∑
n=0

fnx
n
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where we justfied this last step by just shifting our indices (i.e. the sum starting at 2 of
fn−1x

n−1 is just the sum starting at 1 of fnx
n.) Finally, if we notice that because f0 = 0,

we have x
∑∞

n=1 fnx
n = x

∑∞
n=0 fnx

n, we finally have

∞∑
n=0

fnx
n = x + x

∞∑
n=0

fnx
n + x2

∞∑
n=0

fnx
n

⇒
∞∑
n=0

fnx
n − x

∞∑
n=0

fnx
n − x2

∞∑
n=0

fnx
n = x

⇒ (1− x− x2)
∞∑
n=0

fnx
n = x

⇒
∞∑
n=0

fnx
n =

x

1− x− x2
.

Sweet! A closed form. So: according to our blueprint, we want to use this closed form
to find information about our original series, possibly by finding another way to expand it.

Well: if we use partial fractions, we can see that (via algebra that you can check!)

1− x− x2 = (1− xr+) · (1− xr−)

(
where r+ =

1 +
√

5

2
, r− =

1−
√

5

2

)
⇒ x

1− x− x2
=

x

(1− xr+) · (1− xr−)

=
1

r+ − r−
·
(

1

1− xr+
− 1

1− xr−

)
=

1√
5
·
(

1

1− xr+
− 1

1− xr−

)
=

1√
5
·

( ∞∑
n=0

(xr+)n −
∞∑
n=0

(xr−)n

)

=
1√
5
·

( ∞∑
n=0

(rn+ − rn−)xn

)

(You may recognize r+, r− as the golden ratio and its negative reciprocal. Math!)
So: we found a new way to expand our series! In particular, because power series are

unique, we know that the coefficients of this different way to expand our series must be the
same as the coefficients of our original power series

∑
fnx

n:

∞∑
n=0

fnx
n =

1√
5
·

( ∞∑
n=0

(rn+ − rn−)xn

)

⇒ fn =
rn+ − rn−√

5
.
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So we have a closed form for the fn’s. In other words, it worked!
The next part of this lecture is devoted to studying a specific and particularly beautiful

example of this method: the study of nonstandard dice!

1.3 Nonstandard dice.

Definition. Define a k-sided die as a k-sided shape on which symbols s1, . . . sk ∈ N+ are
drawn. Analogously, we can define a k-die to be a bucket with k balls in it, each stamped
with a symbol si ∈ N+. In this sense, “rolling” our die corresponds to picking a ball out of
our bucket; for intuitive purposes, pick whichever model makes more sense and feel free to
use it throughout this lecture.

For our lecture, we restrict all of our symbols to be positive integers: i.e. elements from
the set {1, 2, 3, 4, . . .}.

A standard k-sided die D is just a k-sided die with faces {1, 2, 3 . . . k}. For example, a
standard 6-die is just the normal 6-sided dice that you play most board games with.

The motivating question of this lecture is the following:

Question 1. Can you find two 6-sided dice B,C with the following property: for any n,
the probability that rolling B and C together and summing them yields n is the same as the
probability that rolling two standard 6-sided dice together and summing them yields n?

For example, the probability that (B + C = 7) would have to be 6
36 , because there are 36

different ways for a pair of two 6-sided dice to be rolled, and there are precisely 6 different
ways for a pair of standard 6-sided dice to sum to 7. Similarly, the probablity for (B+C = 2)
would have to be 1

36 , because there’s only one way for a pair of standard 6-sided dice to sum
to 2.

To answer this, surprisingly, we can use language of generating functions1! To do this,
let’s use the following method of turning dice into sequences:

Definition. Given a k-sided die D, let dn denote the number of ways in which rolling D
yields a n. In this sense, the die D and the sequence {dn}∞n=1 are equivalent.

For a standard k-die D, the associated sequence {dn}∞n=1 is just

1, 1, 1 . . . 1︸ ︷︷ ︸
k 1’s

, 0, 0, . . .

Question 2. Take two dice B = {bn}∞n=1, C = {cn}∞n=1, and let

dn = the number of ways that rolling B,C and summing yields n.

What is {dn}∞n=1 in terms of the coefficients bn, cn?

1Well, you could try brute force and checking all 1012 possible pairs of dice with faces from {1, . . . 11},
but that would make for a very long and boring lecture.
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Answer: How many ways can rolling B,C and summing give you n? Well: suppose you’ve
already rolled B and gotten a k. Then you need to roll a n− k on C to get a sum of n! In
other words,

dn = the number of ways that rolling B,C and summing yields n

=

n∑
k=1

(ways to roll B and get k) · (ways to roll C and get n− k)

=

n∑
k=1

bkcn−k.

So: let A = {an}∞n=1 = {1, 1, 1, 1, 1, 1, 0, 0 . . .} be a standard 6-sided die. In the language
of sequences, then, we’re trying to find a pair of dice-sequences {bn}∞n=1, {cn}∞n=1 such that
for every n, we have

n∑
k=1

bkcn−k =
n∑

k=1

akan−k.

This looks. . . awful, right? In other words, we have a problem, and in the language of
sequences, it’s terrible. So: let’s use the method of generating functions to study these
sequences! After all, they can’t get much worse . . .

Question 3. If A = {an}∞n=1 is a standard k-die, what is the power series
∑∞

n=1 anx
n

associated to A?

Answer: As mentioned earlier, we have

{an}∞n=1 = {1, 1, 1 . . . 1︸ ︷︷ ︸
k 1’s

, 0, 0, . . .}.

Therefore, the associated power series to this sequence is just the polynomial

x + x2 + x3 + . . . + xk.

Notice that any power series associated to a k-sided dice D is just a polynomial, as any
k-sided dice has only finitely many faces, and therefore finitely many nonzero elements in
its associated sequence {dn}∞n=1.

Question 4. Let B = {bn}∞n=1, C = {cn}∞n=1, be a pair of dice, and let B(x) =
∑

bnx
n, C(x) =∑

cnx
n be their associated power series.

Let {dn} be the sequence associated to rolling both B,C and summing the result, as
discussed before. What is the power series associated to {dn}?

Answer: If we use our earlier observation about how we can formulate the dn’s in terms
of the bn, cn’s, we have

∞∑
n=1

dnx
n =

∞∑
n=0

(
n∑

k=0

bkcn−k

)
xn.
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But this is just the product of the two polynomials B(x), C(x)! Specifically, you can check
by multiplying terms out via FOIL that( ∞∑

n=1

bnx
n

)
·

( ∞∑
n=1

cnx
n

)
=
∞∑
n=1

(
n∑

k=0

bkcn−k

)
xn,

and therefore that

∞∑
n=1

dnx
n =

( ∞∑
n=1

bnx
n

)
·

( ∞∑
n=1

cnx
n

)
= B(x) · C(x).

In other words, to get the generating function for the sum of two dice, we can simply
take the product of their individual generating functions!

So, in the language of generating functions, our question is now the following:

Question. Find a pair of polynomials with integer coefficients B(x), C(x) such that

• B(x), C(x) both correspond to 6-sided dice: i.e. B(0) = C(0) = 0 [no 0-faces],
B(1) =

∑
bi = 6, C(1) =

∑
ci = 6 [they’re 6-sided], and all of the coefficients of

B(x), C(x) are positive [you can’t have a negative number of ways to roll a certain
result.]

• Rolling B,C and summing is equivalent to rolling two standard 6-sided dice and
summing: i.e. via our earlier work

B(x) · C(x) = (rolling B,C and summing, interpreted as a polynomial)

= (rolling 2 standard 6-dice and summing, interpreted as a polynomial)

= (x + x2 + x3 + x4 + x5 + x6)2.

• Neither B or C are standard dice: i.e. neither B(x) or C(x) are equal to x + x2 +
x3 + x4 + x5 + x6.

Now our question is just one about algebra! I.e. we’re just looking for a pair of poly-
nomials whose product is some specific polynomial, whose coefficients are all positive, and
that when you plug in 0 yield 0 and when you plug in 1 yield 6. This is doable!

Specifically: after playing around with the above polynomial, or talking to an alge-
braicist, you’ll realize that

(x + x2 + x3 + x4 + x5 + x6)2 = (x)2(x + 1)2(x2 + x + 1)2(x2 − x + 1)2.

More specifically, none of the terms (x), (x + 1), (x2 + x + 1), (x2 − x + 1) can be broken
up into smaller polynomials, and there is no way to break up this polynomial into different
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integer polynomials. (In this sense, these polynomials (x), (x+ 1), (x2 + x+ 1), (x2− x+ 1)
are thought of as irreducible polynomials: you cannot break them into smaller parts, and
you cannot break anything made of these polynomials into different parts that does not
use them. A good analogy here is to the role of prime numbers in the integers: just like
any number can be broken up into a bunch of prime factors, any integer polynomial can be
broken up into a bunch of irreducible factors.)

So: the only thing for us to do now is find out if we can split these factors (x), (x +
1), (x2 + x + 1), (x2 − x + 1) into two polynomials, so that they both correspond to 6-sided
nonstandard dice.

Because x + 1 is 2 at x = 1, x2 + x + 1 is 3 at x = 1, and x2 − x + 1 is 1 at x = 1, we
know that each Ai(x) has to have exactly one copy of both x + 1 and x2 + x + 1 in it in
order for Ai(1) to be 6. As well, because they both need to be 0 at x = 0, we need to give
each polynomial a copy of x. Consequently, the only way we can have both of these dice
not be standard is if

B(x) = x(x + 1)(x2 + x + 1)(x2 − x + 1)2 = x8 + x6 + x5 + x4 + x3 + x,

C(x) = x(x + 1)(x2 + x + 1) = x4 + 2x3 + 2x2 + x;

i.e. we have one die with faces {8, 6, 5, 4, 3, 1} and one die with faces {4, 3, 3, 2, 2, 1}.
Check this: they actually work! For example, there are precisely 6 ways in which rolling

these two dice yields 7, just like for a pair of standard 6-sided dice.

1.4 Binomial coefficients.

Question 5. Let f(n, k) denote the number of ways of picking k elements out of the set
{1, 2, . . . n}. What is an explicit form for f(n, k)?

Answer: So: temporarily, for the purposes of this question, forget that we know that
f(n, k) =

(
n
k

)
. Instead: how can we create a generating function for these objects?

Well: first, notice that we have the recurrence relation

f(n, k) = f(n− 1, k) + f(n− 1, k − 1).

Why is this? Well, pick some way of choosing k elements out of {1, 2, . . . n}. There are
two possibilities: either we picked n, or we didn’t! If we did, then ignoring the n gives us
a way of picking k − 1 elements out of a set of n − 1 objects; if we didn’t, then we simply
picked k objects out of a set of n− 1 elements. Summing over all of the ways of choosing k
elements out of {1, 2, . . . n} then gives us our desired result.

Also: notice that f(n, 0) = 1, for all positive n, (as there’s always exactly one way to
not pick anything from a set), that f(n, k) = 0 for all negative n, k (as there’s no way to
pick a negative number of things, or have a set with a negative number of elements,) and
that f(n, k) = 0 if k > n (as there’s no way to pick more than n things out of a set of n
elements.)

So: look at the generating function acquired by fixing n,

Bn(x) =

∞∑
k=0

f(n, k)xk.
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Applying our recurrence relation to the above, then, yields

Bn(x) =
∞∑
k=0

f(n, k)xk

=
∞∑
k=0

(f(n− 1, k) + f(n− 1, k − 1))xk

=
∞∑
k=0

f(n− 1, k)xk + x
∞∑
k=0

f(n− 1, k − 1)xk−1

=
∞∑
k=0

f(n− 1, k)xk +
∞∑

k=−1
f(n− 1, k)xk (b/c f(−1, k) = 0)

= Bn−1(x) + xBn−1(x)

= (1 + x)Bn−1(x).

Then, because B0(x) = 1 (shown via our boundary conditions,) we have via induction
that

Bn(x) = (1 + x)n.

Using this, then, we can find f(n, k) by extracting the coefficient of xk in this power
series! On one hand, you did this on an earlier problem set! On the other hand, if you’ve
forgotten how to do this, you can use calculus to rederive your result:

• Simply take k derivatives of Bn(x) to kill off all of the terms with degree < k.

• Then, evaluate the resulting power series at 0 to eliminate all of the terms with degree
> k.

• Finally, divide by k! to cancel out the constant factor acquired by taking k derivatives
of xk.

(It bears noting that this process will work on any power series! As such, it’s a useful trick
to have up your sleeve.)

So: doing this to Bn(x) yields the following:

dk

dxk
(Bn(x))

∣∣∣∣∣
0

· 1

k!
=

dk

dxk
((1 + x)n)

∣∣∣∣∣
0

· 1

k!

= (n)(n− 1) · · · (n− k + 1) · (1 + x)n−k

∣∣∣∣∣
0

· 1

k!

= (n)(n− 1) · · · (n− k + 1) · (1) · 1

k!

=
(n)(n− 1) · · · (n− k + 1)

k!

=
n!

k! · (n− k)!

9



We’ve rederived the binomial coefficient! Awesome.

1.5 Coins

We close with one last example problem on generating functions. On its surface, this may
look like something you could have done (with some tedium) back in elementary school:

Question 6. In how many ways can you get to 50¢ with some combination of pennies,
nickels, dimes, quarters and half-dollars?

Answer. On one hand, we could simply brute-force the answer to this problem. This
wouldn’t be too satisfying, however; it wouldn’t really tell us anything about the general
problem we’re studying (how to decompose some natural number n into a sum of 1’s, 5’s,
10’s, 25’s and 50’s), nor does it seem very “efficient” in terms of the number of calculations
we’d have to make.

Instead, let’s try applying the one tool we have in this lecture: generating functions!
To make things easier, let’s think about all of the ways to make any amount of change, not
just 50¢, and suppose that we are using only pennies.

While at first glance you might think that the answer here is trivial — there are infinitely
many ways, of course! — the insight is in how we can represent all of those ways. Specifically,
let’s represent P , the total number of ways to use pennies to create some amount of change,
as follows:

P = ∅ + 1 + 1 1 + 1 1 1 + 1 1 1 1 + . . .

= ∅ + 1 + 1
2

+ 1
3

+ 1
4

+ . . . ,

where 1
n

denotes n pennies2.
If we now let N denote the number of ways of making some amount of change with

either nickels or pennies, we can write

N = P + 5 P + 5 5 P + 5 5 5 P + 5 5 5 5 P + . . .

= P + 5 P + 5
2
P + 5

3
P + 5

4
P + . . . .

This is relatively easy to see: if we’re using nickels and pennies, we can group any way we

have of making change into the number of pennies we use ( ∅ + 1 + 1
2

+ . . . = P ) and

the number of nickels we use ( ∅ + 5 + 5
2

+ . . .)

2The reason we use use exponents like 1
n

to denote this, instead of n 1 , is because we want to keep
our various ways of creating amounts of change separate for different amounts of change. In other words, if
we have one way to make 5¢, it does not necessarily follow that we would have 5 ways to make 1¢! Therefore,

we would not want to use notation like 5 1 to represent the number of ways to make 5¢, as this notation
would suggest that we can split up this way to make 5¢ into other ways of making change — when in fact,
we often cannot do this! (I.e. it depends on whether that way was by using 5 pennies or one nickel!)
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If we let D equal the number of ways of using dimes, nickels, and pennies, Q be the
number of ways of using quarters through pennies, and H be the number of ways of using
half-dollars through pennies, we can get similar expressions:

D = N + 10 N + 10
2
N + 10

3
N + 10

4
N + . . . ,

Q = D + 25 D + 25
2
D + 25

3
D + 25

4
D + . . . ,

H = Q + 50 Q + 50
2
Q + 50

3
Q + 50

4
Q + . . . .

Now, consider the following clever trick: take each of our expressions P,N,D,Q,H and

turn them into power series in the variable z by replacing each coin k with zk. In other
words, set

P (z) = 1 + z + z2 + z3 + z4 + . . .

N(z) = P (z) ·
(
1 + z5 + z10 + z15 + z20 + . . .

)
D(z) = N(z) ·

(
1 + z10 + z20 + z30 + z40 + . . .

)
Q(z) = D(z) ·

(
1 + z25 + z50 + z75 + z100 + . . .

)
H(z) = Q(z) ·

(
1 + z50 + z100 + z150 + z200 + . . .

)
Once this is done: think about the coefficient of zn in H(z) above, for any n. With

some time, you should be able to persuade yourself of the following fact: The coefficient of
zn is precisely the number of ways to make n¢ using pennies, nickels, dimes, quarters, and

half-dollars! This is because we’ve just replaced each of our coins k with zk; therefore any
collection of coins that sum to n¢ has been transformed into a zn.

Therefore, if we can just find the coefficient of z50 in H(z) above, we’ve answered our
original problem! If we wanted, we could simply do this out right now by just multiplying
our series together; however, this seems difficult (as noted earlier in our notes, the product
of two series is hard to calculate!) and not like the most elegant solution.

Instead, let’s try to get a cleaner and more general solution. First, recall the following
identity from calculus:

∞∑
n=0

anxn =
1

1− ax
.

If you haven’t seen this before, well, you weren’t paying attention earlier in these notes!
We’ve used this in our earlier generating functions problems. However, we never formally
justified it as something we can do with formal power series: we fix this here, using only
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generating function techniques:

∞∑
n=0

anxn = a0x0 +
∞∑
n=1

anxn = 1 +
∞∑
n=0

an+1xn+1 = 1 + ax
∞∑
n=0

anxn

⇒ (1− ax)

∞∑
n=0

anxn = 1

⇒
∞∑
n=0

anxn =
1

1− ax
.

With this established, plugging in x = z, z5, z10, z25, z50 yields the identities

∞∑
n=0

zn =
1

1− z
,

∞∑
n=0

(z5)n =
1

1− z5
,

∞∑
n=0

(z10)n =
1

1− z10
,

∞∑
n=0

(z25)n =
1

1− z25
,

∞∑
n=0

(z50)n =
1

1− z50
,

which when applied to our P (z), N(z), D(z), Q(z) and H(z) yields the identities

P (z) =
1

1− z
,

N(z) = P (z)
1

1− z5
=

1

(1− z)(1− z5)
,

D(z) = N(z)
1

1− z10
=

1

(1− z)(1− z5)(1− z10)
,

Q(z) = D(z)
1

1− z25
=

1

(1− z)(1− z5)(1− z10)(1− z25)
,

H(z) = Q(z)
1

1− z50
=

1

(1− z)(1− z5)(1− z10)(1− z25)(1− z50)
.

Again, from here we could simply expand the denominator of H(z) into the degree-91
polynomial that it is, decompose this into its 91 roots, and use partial fractions to break this
up into a ton of fractions, each one of which we could use the

∑∞
n=0 a

nxn = 1
1−ax identity

to turn into tractable power series. Summing all of those up would give us our answer, and
if you think that’s a good idea go and give it a shot!

In the meantime, the sane people will continue with these notes, and try to find a
solution that doesn’t involve factoring a degree-91 polynomial to make change. In particular,
there is one clever idea that we can use here that bears special attention! First, recall
that throughout all of these notes, we’ve repeatedly used proof structures that model the
following:

Given a recurrence relation, we can find a closed form for a generating function!
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The situation we’re in now, however, is the opposite; we have generating functions, but we
don’t have a recurrence relation for our change problem! Accordingly, we’re motivated to
flip the above method:

Given a generating function, can we find a recurrence relation for its coefficients?

The answer to this question is yes! In particular, notice that if we take our earlier
expressions for P (z), N(z), D(z), Q(z) and H(z) and multiply through, we get

(1− z)P (z) = 1,

(1− z5)N(z) = P (z),

(1− z10)D(z) = N(z),

(1− z25)Q(z) = D(z),

(1− z50)H(z) = Q(z).

For notation’s sake, let Pn, Nn, Dn, Qn, Hn denote the coefficients of P (z), N(z), D(z), Q(z)
and H(z) above. Then, for P (z), we specifically have

(1− z)P (z) = (1− z)
∞∑
n=0

Pnz
n = 1

⇒
∞∑
n=0

Pnz
n − z

∞∑
n=0

Pnz
n = 1

⇒ P0 +
∞∑
n=1

Pnz
n −

∞∑
n=0

Pnz
n+1 = 1

⇒
∞∑
n=1

(Pn − Pn−1)z
n = 1− P0 = 0,

because P0 = 0 = the number of ways to use zero pennies. However: we know that two
formal power series are equal if and only if their coefficients are equal! Therefore, the
coefficients of the left-hand-side — the expression (Pn−Pn−1) — is equal to the coefficients
of the right hand side, which are all zero! In other words, we have

P0 = 1, Pn = Pn−1.

A recurrence relation! A really boring one; it in fact just says that Pn = 1 for every n. But
this is what we would expect, because P (z) = 1+z+z2 +z3 + . . . is indeed the power series
where all of its coefficients are 1!

More usefully, we can use the exact same logic above to deduce recurrence relations for
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N(z), D(z), Q(z) and H(z):

(1− z5)N(z) = P (z)

⇒
∞∑
n=0

Nnz
n − z5

∞∑
n=0

Nnz
n =

∞∑
n=0

Pnz
n

⇒ N0 + N1z + N2z
2 + N3z

3 + N4z
4 +

∞∑
n=5

Nnz
n −

∞∑
n=0

Nnz
n+5 =

∞∑
n=0

Pnz
n

⇒ N0 + N1z + N2z
2 + N3z

3 + N4z
4 +

∞∑
n=5

(Nn −Nn−5)z
n =

∞∑
n=0

Pnz
n.

By equating the left and right-hand sides, we have the recurrence relation

N0 = P0, N1 = P1, N2 = P2, N3 = P3, N4 = P4;

Nn = Nn−5 + Pn,∀n ≥ 5.

Using similar methods to the above two derivations gives us

D0 = N0, . . . D9 = N9, Dn = Dn−10 + Nn,∀n ≥ 10,

Q0 = D0, . . . Q24 = D24, Qn = Qn−25 + Dn, ∀n ≥ 25,

H0 = Q0, . . . H49 = Q49, Hn = Hn−50 + Qn, ∀n ≥ 50.

Recurrence relations! We can use these to populate a table of values for our coefficients, by
simply applying the relations above to the “base-case” values Pn = 1,∀n:

n 0 5 10 15 20 25 30 35 40 45 50

Pn 1 1 1 1 1 1 1 1 1 1 1
Nn 1 2 3 4 5 6 7 8 9 10 11
Dn 1 2 4 6 9 12 16 20 25 30 36
Qn 1 2 4 6 9 13 18 24 31 39 49

Hn 1 2 4 6 9 13 18 24 31 39 50

So there are exactly fifty ways to make 50¢ using our change! That’s remarkably nice,
actually.
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