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Lecture 4: Finite Groups
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Over the first three weeks of this course, we’ve considered combinatorial questions about
sets: that is, collections of static objects, which we’ve focused on enumerating in various
ways. However, these are not the only sorts of objects combinatorialists study! Instead,
we can study what happens when we equip sets with operations: that is, various ways to
act on and manipulate elements of our set! When we do this in certain ways, this gives us
access to questions that demand stronger techniques than we’ve developed so far: we can
enumerate elements of sets, but what happens when we add functions into the mix? How
do we study sets that can change?

This, in a sense, is going to be the focus of the rest of the course. Over the next seven
weeks, we’re going to examine three specific ways to add structure to sets: groups, fields
and vector spaces. In particular, we’re going to study finite examples of all of these
objects, and look at how combinatorialists use all of these objects to solve problems in the
field!

The first such concept we study here is the idea of a group:

1 Groups

1.1 Basic definitions / examples.

Definition. A group is a set G along with some operation · that takes in two elements
and outputs another element of our group, such that we satisfy the following properties:

• Identity: there is a unique identity element e ∈ G such that for any other g ∈ G, we
have e · g = g · e = g.

In other words, combining any group element g with the identity via our group oper-
ation does not change g! You know many objects like this: if we work with the real
numbers R and think of addition as our group operation, then 0 is our identity, as
0 + x = x for any x. Similarly, if we consider the real numbers again but take our
operation to be multiplication, then 1 is our identity, as 1 · x = x for any x.

• Inverses: for any g ∈ G, there is a unique g−1 such that g · g−1 = g−1g = e.

In other words, if we start at any group element g, we can always find something to
combine with g using our group operation to get back to the identity! Again, you know
several objects like this: with R and addition, the inverse of any number x is just its
negative −x, while if we consider the set of nonzero real numbers and multiplication,
the inverse for any x is just 1/x.

• Associativity: for any three a, b, c ∈ G, a · (b · c) = (a · b) · c.
In other words, the order in which we group combinations together doesn’t matter, as
long as the sequence that we have those objects grouped together in does not change!
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I.e. we can combine a with b · c, or first find a · b and then combine that with c.
Again, most of the natural operations you’re familiar with (addition, multiplication)
are associative: it is perhaps more interesting to point out some things that are

nonassociative. For example, exponentiation is a nonassociative operation: 2(34) =
281 ≈ 2.41 · 1024, while (23)4 = 84 = 4096.

It bears noting that this does not say that a · b = b · a: that is a different property,
called commutativity, and is not a property that groups need to have (as we will show
in the examples!) Groups that are commutative are called abelian groups, after the
mathematician Niels Henrik Abel.

We list a number of examples of groups, as well as some nonexamples. Here, we don’t
give formal proofs that any of these objects are groups; instead, we list them rapid-fire
to give you a list of examples to think about in your head! (If you’re interested, you can
prove that any of these objects satisfy the claimed properties, though! For some it will be
harder than others, but if you’re in the Introduction to Higher Mathematics class they are
all proofs you could come up with given sufficient time.)

Example. As noted above, the real numbers with respect to addition, which we denote as
〈R,+〉, is a group: it has the identity 0, any element x has an inverse −x, and it satisfies
associativity.

Nonexample. The real numbers with respect to multiplication, which we denote as 〈R, ·〉,
is not a group: the element 0 ∈ R has no inverse, as there is nothing we can multiply 0 by
to get to 1!

Example. The nonzero real numbers with respect to multiplication, which we denote as
〈R×, ·〉, is a group! The identity in this group is 1, every element x has an inverse 1/x such
that x · (1/x) = 1, and this group satisfies associativity.

Example. The integers with respect to addition, 〈Z,+〉 form a group!

Nonexample. The integers with respect to multiplication, 〈Z, ·〉 do not form a group: for
example, there is no integer we can multiply 2 by to get to 1.

Nonexample. The natural numbers N are not a group with respect to either addition or
multiplication. For example: in addition, there is no element −1 ∈ N that we can add to 1
to get to 0, and in multiplication there is no natural number we can multiply 2 by to get
to 1.

Example. GLn(R), the collection of all n × n invertible real-valued matrices, is a group
under the operation of matrix multiplication. Notice that this group is an example of a

nonabelian group, as there are many matrices for which AB 6= BA: consider

[
0 1
0 0

]
·[

1 0
0 0

]
=

[
0 0
0 0

]
versus

[
1 0
0 0

]
·
[
0 1
0 0

]
=

[
0 1
0 0

]
.
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Example. SLn(R), the collection of all n × n invertible real-valued matrices with deter-
minant 1, is also a group under the operation of matrix multiplication; this is because the
property of being determinant 1 is preserved under taking inverses and multiplication for
matrices.

These examples are all great, but they’re not really what I’m interested in for this
class. Instead, I want to focus on examples of finite groups! In the next section, we study
examples of these groups in more depth than above, and explain more about why they form
a group.

1.2 Finite groups.

Definition. The object 〈Z/nZ,+, ·〉 is defined as follows:

• Your set is the numbers {0, 1, 2, . . . n− 1}.

• Your addition operation is the operation “addition mod n,” defined as follows: we say
that a+ b ≡ c mod n if the two integers a+ b and c differ by a multiple of n.

For example, suppose that n = 3. Then 1 + 1 ≡ 2 mod 3, and 2 + 2 ≡ 1 mod 3.

• Similarly, our multiplication operation is the operation “multiplication mod n,” writ-
ten a · b ≡ c mod n, and holds whenever a+ b and c differ by a multiple of n.

For example, if n = 7, then 2 · 3 ≡ 6 mod 7, 4 · 4 ≡ 2 mod 7, and 6 · 4 ≡ 3 mod 7.

Example. Z/nZ = {0, 1, . . . n − 1} is a commutative group with respect to the operation
of addition mod n! This is not hard to check:

1. Identity: 0 is the identity of this group. This is easy to check: take any x ∈
{0, 1, . . . n − 1}. We know that 0 + x = x in the integers; therefore, because the
difference of any two equal numbers is 0, and 0 is a multiple of n for any n, we have
by definition that 0 + x ≡ x mod n.

2. Associativity and commutativity are inherited from the integers in a similar fash-
ion! Notice that

∀x, y, z ∈ Z/nZ, x+ (y + z) = (x+ y) + z and x+ y = y + x

⇒ ∀x, y, z ∈ {1, . . . n− 1}, x+ (y + z) = (x+ y) + z and x+ y = y + x

⇒ ∀x, y, z ∈ {1, . . . n− 1}, x+ (y + z) ≡ (x+ y) + z mod n and x+ y ≡ y + x mod n,

by exactly the same logic as above (equality implies equivalence mod n for any n.)

3. Inverses: Given any k 6= 0 ∈ {0, 1, . . . n− 1}, notice that n− k is also in this set, and
that k + n− k = n ≡ 0 mod n. Therefore every element has an inverse, as claimed!

This is not the only way in which modular arithmetic can make a group:
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Example. (Z/pZ)× = {1, . . . p− 1} is a commutative group with respect to the operation
of multiplication mod p, if and only if p is a prime.

Seeing this is not too difficult. If you repeat the logic from our earlier proof, we can see
that (Z/pZ)× satisfies associativity, identity and commutativity, simply because these
properties are “inherited” from the integers Z.

Therefore, the only property we need to check is inverses. We first deal with the case
where p is not prime. Write p = mn for two positive integers m,n 6= 1; notice that because
both of these values must be smaller than p if their product is p, both m and n live in the
set {1, . . . p− 1}.

Consider the element n. In particular, notice that for any k, we have

kn ≡ x mod p

⇒kn− x is a multiple of p

⇒kn− x is a multiple of mn

⇒kn− x is a multiple of n

⇒x is a multiple of n.

(If none of the above deductions make sense, reason them out in your head!) Because of
this, we can see that n has no inverse in (Z/pZ)×, as kn is only congruent to multiples of
n, and 1 is not a multiple of n.

The converse — showing that if p is prime, (Z/pZ)× has inverses — is a little trickier.
We do this as follows: first, we prove the following claim.

Claim. For any a, b ∈ {0, . . . p − 1}, if a · b ≡ 0 mod p, then at least one of a, b are equal
to 0.

Proof. Take any a, b in {0, . . . p−1}. If one of a, b are equal to 0, then we know that a ·b = 0
in the normal “multiplying integers” world that we’ve lived in our whole lives. In particular,
this means that a · b ≡ 0 mod p as well.

Now, suppose that neither a nor b are equal to 0. Take both a and b. Recall, from grade
school, the concept of factorization:

Observation. Take any nonzero natural number n. We can write n as a product of prime
numbers n1 · . . . · nk; we think of these prime numbers n1, . . . nk as the “factors” of n.
Furthermore, these factors are unique, up to the order we write them in: i.e. there is only
one way to write n as a product of prime numbers, up to the order in which we write those
primes. (For example: while you could say that 60 can be factored as both 2 · 2 · 3 · 5 and as
3 · 2 · 5 · 2, those two factorizations are the same if we don’t care about the order we write
our numbers in.)

In the special case where n = 1, we think of this as already factored into the “trivial”
product of no prime numbers.

Take a, and write it as a product of prime numbers a1 · . . . · ak. Do the same for b, and
write it as a product of primes b1 · . . . · bm. Notice that because a and b are both numbers
that are strictly between 0 and n − 1, n cannot be one of these prime numbers (because
positive multiples of n must be greater than n!)
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In particular, this tells us that the number a · b on one hand can be written as the
product of primes a1 · . . . ·ak · b1 · . . . · bm, and on the other hand (because factorizations into
primes are unique, up to ordering!) that there is no n in the prime factorization of a · b.

Conversely, for any natural number k, the number k · n must have a factor of n in its
prime factorization. This is because if we factor k into prime numbers k1 · . . . · kj , we have
k · n = k1 · . . . · kj · n, which is a factorization into prime numbers and therefore (up to the
order we write our primes) is unique!

In particular, this tells us that for any k, the quantities a · b and k · p are distinct; one
of them has a factor of p, and the other does not. Therefore, we have shown that if both a
and b are nonzero, then a · b cannot be equal to a multiple of p — in other words, a · b is
not congruent to 0 modulo p! Therefore, the only way to pick two a, b ∈ {0, . . . p− 1} such
that a · b is congruent to 0 modulo p is if at least one of them is equal to 0, as claimed.

From here, the proof that our group has inverses is pretty straightforward. Take any
x ∈ (Z/pZ)×, and suppose for contradiction that it did not have any inverses. Look at the
multiplication table for x in (Z/pZ)×:

1 2 3 . . . p− 1

x ? ? ? . . . ?

If x doesn’t have an inverse, then 1 does not show up in the above table! The above table
has p slots, and if we’re trying to fill it without using 1, we only have p − 1 values to put
in this table; therefore some value is repeated! In other words, there must be two distinct
values k < l with xl ≡ xk mod p.

Consequently, we have x(l−k) ≡ 0 mod p, which by our above observation means that
one of x, (l − k) are equal to 0. But x is nonzero, as it’s actually in (Z/pZ)×: therefore,
l− k is equal to 0, i.e. l = k. But we said that k, l are distinct; so we have a contradiction!
Therefore, every element x has an inverse, as claimed.

There are other finite groups beyond those made out of modular arithmetic! In partic-
ular, there are several notable examples of noncommutative groups: we describe some of
those here.

Example. The symmetric group Sn is the collection of all of the permutations on the set
{1, . . . n}, where our group operation is composition. In case you haven’t seen this before:

• A permutation of a set is just a bijective function on that set. For example, one
bijection on the set {1, 2, 3} could be the map f that sends 1 to 2, 2 to 1, and 3 to 3.

• One way that people often denote functions and bijections is via “arrow” notation:
i.e. to describe the map f that we gave above, we could write

f :

1

��

2

��

3

��
1 2 3
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• This, however, is not the most space-friendly way to write out a permutation. A
much more condensed way to write down a permutation is using something called
cycle notation. In particular: suppose that we want to denote the permutation
that sends a1 → a2, a2 → a3, . . . an−1 → an, an → a1, and does not change any of
the other elements (i.e. keeps them all the same.) In this case, we would denote this
permutation using cycle notation as the permutation

(a1a2a3 . . . an).

To illustrate this notation, we describe all of the six possible permutations on {1, 2, 3} using
both the arrow and the cycle notations:

id :

 1

��

2

��

3

��
1 2 3

 (12) :

 1

��

2

��

3

��
1 2 3

 (13) :

 1

''

2

��

3

ww
1 2 3



(23) :

 1

��

2

��

3

��
1 2 3

 (123) :

 1

��

2

��

3

ww
1 2 3

 (132) :

 1

''

2

��

3

��
1 2 3



It’s worth noting that some permutations need to be represented with multiple cycles.
For example,

(143)(25) =

 1

))

2

))

3

ww

4

��

5

uu1 2 3 4 5

 ,

because 1 maps to 4, 4 maps to 3, and 3 maps to 1, giving us (143), and 2 maps to 5 maps
to 2, giving us (25).

Because the composition of any two bijections is still a bijection, we have in particu-
lar that the composition of any two permutations is another permutation: so our group
operation does indeed combine group elements into new group elements.

Composing any map f with the identity map id(x) = x does not change the map f , so
id(x) is an identity element.

Associativity is tedious but doable to check: take any three bijections f : C → D, g :
B → C, h : A → B. We want to check that (f ◦ g) ◦ h : A → D is the same map as
f ◦ (g ◦ h) : A → D. To do this, it suffices to show that they send the same elements to
the same places, as this is exactly what it means for two functions to be equal. Take any
a ∈ A, and notice that

((f ◦ g) ◦ h)(a) = (f ◦ g)(h(a)) = f(g(h(a)))

(f ◦ (g ◦ h))(a) = (f(g(h(a)))) = f(g(h(a))).
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So we satisfy associativity!
Finally, to see that we have inverses, notice that any bijection f : X → Y has an inverse

function f−1Y → X defined by

f−1(y) = the unique x such that f(x) = y.

Notice that f−1 ◦ f(x) = x for any x: in other words, their composition is the identity!
Therefore, any bijection has an inverse, and thus Sn is a group.

While the above work certainly shows that Sn is a group, it may not do a great job of
giving us a feel for how to combine its elements. To do this, let’s demonstrate a small yet
useful property about Sn:

Definition. A permutation σ ∈ Sn is called a transposition if we can write σ = (ab), for
two distinct values a, b ∈ {1, . . . n}.

Claim. We can write any σ ∈ Sn as a product of transpositions.

Proof. To illustrate what our claim is, let’s work it out for all of the elements of S3. We
first note that (12), (13) and (23) are all trivially covered by this proposition, as they are
themselves transpositions; as well, we can “trivially” write id as the product (12)(12),
amongst other things, as

id :

 1

��

2

��

3

��
1 2 3

 = (12)(12) :



1

��

2

��

3

��
1

��

2

��

3

��
1 2 3


,

because both maps send 1 to 1, 2 to 2, and 3 to 3 (just follow the arrows!)
To work this out for (123) and (132) takes not much more work. Simply notice that

to do the permutation (123), we could start with the swap 1 and 2, to get 1 to map to
the right thing; from there, we currently have 2 → 1 and 3 → 3, when we want 2 → 3
and 3 → 1. Swapping 1 and 3 fixes these issues, and gives us the swap we want! Because
function compositions are read right-to-left (because in f(g(x)), you apply g to x before
applying f !), we would write this as (13)(12): and indeed, we can check that

(123) =

 1

��

2

��

3

ww
1 2 3

 = (13)(12) =



1

��

2

��

3

��
1

''

2

��

3

ww
1 2 3


.
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Using similar logic, we can see that (132) can be written as (12)(13):

(132) :

 1

''

2

��

3

��
1 2 3

 = (12)(13) =



1

''

2

��

3

ww
1

��

2

��

3

��
1 2 3


.

This hopefully gives us a bit more of a feel for what we’re doing here! Just to illustrate
a tricker case, however, let’s try a longer permutation: what about σ = (12345) ∈ S5? Well:
let’s use similar logic to our earlier cases. We know that σ sends 1 → 2; so we can start
with (12) as our first transposition. Now 1’s going to the right place! If we consider 2, it’s
currently going to 1, when it should be going to 3. Therefore, if we follow up our first switch
with (13), it will send 2 to 3, while not changing where 1 maps to (as we didn’t touch its
target from the first step, 2!)

This process continues: 3 is mapping to 1 now, and it should map to 4; so we should
apply (14). Then, 4 is mapping to 1, and it should map to 5; so we apply (15). Now we
have 5 mapping to 1, which is correct; in other words, all of our elements are mapping to
the right place! This is easily verified with a quick diagram:

(12345) =

 1

��

2

��

3

��

4

��

5

ss1 2 3 4 5



(15)(14)(13)(12) =



1

��

2

��

3

��

4

��

5

��
1

''

2

��

3

ww

4

��

5

��
1

))

2

��

3

��

4

uu

5

��
1

++

2

��

3

��

4

��

5

ss1 2 3 4 5



.

In general, suppose we have any cycle (a1a2 . . . an). I claim that we can write this cycle
as the product

(a1a2 . . . an) = (a1an) . . . (a1a4)(a1a3)(a1a2);

we prove this by induction. Our base case, when n = 2, is trivially true: so we move to
our inductive step. Assume that our case holds for length-n cycles, and consider a cycle
(a1a2 . . . anan+1) of length n+ 1.
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So: consider the product (a1an+1)(a1an) . . . (a1a4)(a1a3)(a1a2). We want to show that
this permutation is precisely the cycle (a1a2 . . . anan+1) .

By induction, we know our product of transpositions is equal to (a1an+1)(a1a2 . . . an).
Consider where this permutation sends elements:

• If we look at any of the elements ak ∈ {a1, . . . an−1}, each ak gets sent to ak+1 by
the cycle (a1a2 . . . an); because none of the elements a2, . . . an are in the transposition
(a1an+1), it does not interact further with any of these elements.

• If we look at an, it is sent to a1 by the cycle (a1a2 . . . an); because a1 is then sent to
an+1 by the transposition (a1an+1), in total we have that an is sent to an+1.

• Finally, an+1 is not touched by the cycle (a1a2 . . . an), and is then sent to a1 by the
transposition (a1an+1).

In total, we have that each ak is sent to ak+1, with the exception of an+1, which is sent to
a1. In other words, our product of transpositions is precisely (a1a2 . . . anan+1) , as claimed.

Via cycle notation, we can write any permutation as some product of cycles: applying
this result to each cycle in turn lets us write each permutation as a product of cycles, as
claimed.

Not all finite groups are as algebraic as Sn! Our last example, for instance, is beautifully
geometric in nature:

Example. Consider a regular n-gon. There are a number of geometric transformations,
or similarities, that we can apply that send this n-gon to “itself” without stretching or
tearing the shape: i.e. there are several rotations and reflections that when applied to a
n-gon do not change the n-gon. For example, given a square, we can rotate the plane by
0◦, 90◦, 180◦, or 270◦, or flip over one of the horizontal, vertical, top-left/bottom-right, or
the top-right/bottom-left axes:
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a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

(rotateRbyR0°)
b c

da

c d

ab

d a

bc

(rotateRbyR180°)

(rotateRbyR90°)

(rotateRbyR270°)

a b

cd

d c

ba

(flipRoverRhorizontal)
a b

cd

b a

dc

(flipRoverRvertical)

a b

cd

a d

cb

(flipRoverRUL/DRRdiagonal)
a b

cd

c b

ad

(flipRoverRUR/DLRdiagonal)

Given two such transformations f, g, we can compose them to get a new transformation
f ◦ g. Notice that because these two transformations each individually send the n-gon to
itself, their composition also sends the n-gon to itself! Therefore composition is a well-
defined operation that we can use to combine two transformations.

a b

cd

b c

da

(rotate by 90°)

a b

cd

c b

ad

(flip over UR/DL diagonal)

c b

ad

(flip over vertical)

=

Notice that the trivial rotation by 0◦, when composed with any other map, does not
change that map: so, under the operation of composition, rotation by 0◦ is an identity!
Similarly, notice that performing the same flip twice in a row returns us back to the identity,
so every flip has an inverse given by itself! (I.e. if f is a flip, f ◦ f = id: i.e. f = f−1.)
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As well, if we rotate by k degrees, rotating by 360− k degrees results in a total rotation by
360: i.e. rotation by 0◦. So all rotations have inverses as well!

Finally, notice that because function composition is associative (as shown above!), this
operation is associative as well. Consequently, the collection of all symmetries of a regular
n-gon forms a group under the operation of function composition!

We call this last group D2n, because it is the group of order1 2n. Algebraists will
usually use this terminology; geometers, however, will often write the same group as Dn,
as they care about they object whose symmetries we are studying (a n-gon) more than the
number of symmetries themselves (2n).

1.3 Enumerating groups.

This is a discrete mathematics course! Consequently, the first question we should have,
upon encountering a new concept, is (roughly) the following: how many of these things
exist? To be a bit more precise:

Question. Given any natural number n, how many groups are there of order n?

At first glance, you might suspect that the answer is infinite! For example, the following
four groups all give us groups of order 1:

• 〈{1}, ·〉, the group with one element 1, and the operation of multiplication.

• 〈{0},+〉, the group with one element 0, and the operation of addition.

• 〈{f : R → R, f(x) = x}, ◦〉, the group with one element f(x) = x, and the operation
of composition.

• S1, the group made of all permutations of the set {1} with respect to composition of
permutations.

We could easily keep going, and in fact make an infinite family of order-1 groups:

• For any n ∈ N, let 〈{f : {n} → {n}, f(n) = n}, ◦〉 denote the one-element group of all
maps from {n} to {n} under group composition.

However, in a sense all of these groups are the same! They all have one element — call it x
for right now — and their operations are all defined by sending (x, x) to x. So, in a sense,
calling these groups “different” is kind of silly: they have different names and labels, but
they’re all encoding the same size and structure as each other!

We make this formal via the following definition:

Definition. Take any two groups 〈G, ·〉, 〈H, ?〉, and any map ϕ : G → H. We say that ϕ
is a group isomorphism if it satisfies the following two properties:

1. Preserves size: ϕ is a bijection2.

1The order of a group is the number of elements in that group!
2Notice that this means that there is an inverse map ϕ−1 : H → G, defined by ϕ−1(h) = the unique

g ∈ G such that ϕ(g) = h.
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2. Preserves structure: ϕ, in a sense, sends · to ?. To describe this formally, we say
the following:

∀g1, g2 ∈ G, ϕ(g1 · g2) = ϕ(g1) ? ϕ(g2).

This property “preserves structure” in the following sense: suppose that we have two
elements we want to multiply together in H. Because ϕ is a bijection, we can write
these two elements as ϕ(g1), ϕ(g2). Our property says that ϕ(g1 · g2) = ϕ(g1) ? ϕ(g2):
in other words, if we want to multiply our two elements in H together, we can do so
using either the G-operation · by calculating ϕ(g1 · g2), or by using the H-operation
? by calculating ϕ(g1) ? ϕ(g2).

Similarly, if we want to multiply any two elements g1, g2 in G together, we can see
that g1 ·g2 = ϕ−1(ϕ(g1 ·g2)) = ϕ−1(ϕ(g1)?ϕ(g2)). So, again, we can multiply elements
using either G or H’s operation! To choose which operation we use, we just need to
apply ϕ or ϕ−1 as appropriate to get to the desired set, and perform our calculations
there.

This is something that is perhaps best understood with an example. Consider the
following two groups:

Example. Take a 1 × 2 rectangle, and the set of all geometric transformations that send
this rectangle to itself without stretching or tearing. There are four such transformations:
flipping across either the horizontal or vertical axes, rotating 180◦, or the identity transfor-
mation:

id, r180, fv, fh.

These transformations form a group!

To see how they interact, we can form a group table, which we define here:

Definition. Take any group 〈G, ·〉 of order n: that is, any group G consisting of n distinct
elements. We can create a group table corresponding to G as follows:

• Take any ordering r1, . . . rn of the n elements of G: we use these elements to label our
rows.

• Take any other ordering c1, . . . cn of the n elements of G: we use these elements to
label our columns. (This ordering is usually the same as that for the rows, but it does
not have to be.)

• Using these two orderings, we create a n × n array, called the group table of G, as
follows: in each cell (i, j), we put the entry ri · cj .

For example, one group table for the symmetries of the rectangle we were discussing
earlier could be the following:
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ri ◦ cj id r180 fv fh

id id r180 fv fh

r180 r180 id fh fv

fv fv fh id r180

fh fh fv r180 id

This table actually helps us verify that our collection of transformations is a group! In
particular, by looking at it, we can see that id is an identity, as id◦(anything) = (anything).
We can also see that every element has an inverse, as there is a copy of id in every row
(and therefore for any element x, there is some other element x−1 such that x · x−1 = id.)
Associativity is the only group property that is not immediate from looking at a group table;
to check it for this example, however, we can just refer to our earlier proof that function
composition in general was associative.

Example. Take the set (Z/2Z)× (Z/2Z), otherwise denoted as (Z/2Z)2. This set has four
elements: (0, 0), (0, 1), (1, 0), (1, 1), and is a group under the operation of “pairwise addition
mod 2. To see this, we will construct this group’s table as well:

ri + cj mod 2 (0, 0) (1, 1) (1, 0) (0, 1)

(0, 0) (0, 0) (1, 1) (1, 0) (0, 1)

(1, 1) (1, 1) (0, 0) (0, 1) (1, 0)

(1, 0) (1, 0) (0, 1) (0, 0) (1, 1)

(0, 1) (0, 1) (1, 0) (1, 1) (0, 0)

As before, we can tell by looking at this table that our set has an identity (0, 0), and that
every element has an inverse! To see associativity, we just use the fact that we know that
〈Z/nZ,+〉 is associative from our earlier work: therefore, if we have any three elements
(a, b), (c, d), (e, f), we know that

(a, b) + ((c, d) + (e, f)) = (a, b) + (c+ e, d+ f)

= (a+ (c+ e), b+ (d+ f))

= ((a+ c) + e, (b+ d) + f)

= (a+ c, b+ d) + (e, f)

= ((a, b) + (c, d)) + (e, f).

So this is a group!

In fact, not only is 〈(Z/2Z)× (Z/2Z),+〉 a group, but it’s a group that is isomorphic
to our first group of symmetries of a rectangle! To see this, simply consider the bijection
ϕ : (Z/2Z)× (Z/2Z)→ {id, r180, fv, fh} defined by
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• f((0, 0)) = id,

• f((1, 1)) = r180,

• f((1, 0)) = fv,

• f((0, 1)) = fh.

Take this map, and apply it to the group table for 〈(Z/2Z)×(Z/2Z),+〉: that is, replace
each element of (Z/2Z)× (Z/2Z) with φ of that element! This gives us

ri + cj mod 2 (0, 0) (1, 1) (1, 0) (0, 1)

(0, 0) (0, 0) (1, 1) (1, 0) (0, 1)

(1, 1) (1, 1) (0, 0) (0, 1) (1, 0)

(1, 0) (1, 0) (0, 1) (0, 0) (1, 1)

(0, 1) (0, 1) (1, 0) (1, 1) (0, 0)

7−→

ϕ(ri + cj mod 2) id r180 fv fh

id id r180 fv fh

r180 r180 id fh fv

fv fv fh id r180

fh fh fv r180 id

which is just our table that we calculated earlier for the symmetries of a rectangle! In
other words, we’ve just explicitly shown that ϕ(g1 + g2) = ϕ(g1) ◦ ϕ(g2), for any g1, g2 ∈
(Z/2Z)×(Z/2Z). Therefore, ϕ is a group isomorphism, and these two groups are isomorphic!

The idea here is that on some fundamental level, these two groups are the “same:” if
you’re adding things in (Z/2Z) × (Z/2Z) or composing symmetries of a rectangle, you’re
really doing the same things, up to the labels you’ve assigned to objects! This is a powerful
observation to have. Many times in mathematics, it can be useful to take a problem and
rephrase it in a different way; i.e. some tools may be easier to apply to a problem that’s
talking about geometric transformations, while others might be easier when you’re working
with a more number-theoretic setting like Z/nZ!

Notice, also, how we showed that these two groups were equal: by finding a bijection
that sent one group’s table to the other! This process generalizes completely:

Theorem. Two groups 〈G, ·〉, 〈H, ?〉 are isomorphic if and only if there is a bijection ϕ :
G→ H such that when we apply ϕ to a group table of G, we get a group table of H!.

Note that our claim is not that applying ϕ to a group table of G gives us any group table
of H. It is possible that when we look at H’s group table, we would have written some
elements in a different order; this does not mean that our group is different, or that ϕ would
not be a isomorphism!

Using these ideas, you can verify the following claims:

• There is one group of order 1, up to isomorphism.

• There is one group of order 2, up to isomorphism.

• There is one group of order 3, up to isomorphism.

• There are two groups of order 4, up to isomorphism.

To verify these claims, use the following process:

1. To count groups of order n, take n distinct elements id, a1, . . . an−1, where we’ve
decided that id is the identity element. (One identity must exist, so we are justified
in doing this, and have lost no generality in doing so thus far!)
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2. Attempt to find all of the ways to fill in the n×n group table for these elements that
preserves our identity and inverse properties. Notice that this will force you to have
no repeated elements in any row or column (as rc1 = rc2 ⇒ c1 = c2 by using the
existence of inverses!)

3. Now that you’ve made all of your tables, check to see if any are isomorphic!

4. Finally, check each table for associativity. (This is the least-fun part.)

5. The total number of nonisomorphic group tables is your total number of groups.

We illustrate this method for n = 3:

Claim. There is one group of order 3 up to isomorphism

Proof. Take any group on three elements. Without loss of generality, let’s name its elements
{id, x, y}; we can do this without losing generality because we only care about groups up
to isomorphism, and thus in particular don’t care about the names of our elements (as a
bijection can just relabel them to anything else.) Furthermore, assume that one of them is
the identity; we can do this because we know some identity element exists. Again, because
we don’t care about what things are named, we can assume that id is the identity.

Consider any possible group table for these elements under any arbitrary group oper-
ation. We know that because id is an identity, we have the following entries filled in “for
free’ by using the definition of identity:

ri · cj id x y

id id x y

x x

y y

Notice that if x · x = id, our “no repeats in any row or column” idea would force x · y = y,
which would place a repeated value in y’s column. This cannot happen; therefore x ·x 6= id.
We also know from this no-repeats property that x · x 6= x, as we already have an x in this
row: therefore, we have x · x = y.

ri · cj id x y

id id x y

x x y

y y

Our no-repeats property then forces us to set x · y = id, y · x = id, and y · y = x:

ri · cj id x y

id id x y

x x y id

y y id x
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Therefore we have at most one group table! If you want, you could directly check that this
table is associative: alternately, you can observe that this is just the table for addition mod
3, which we already know is a group!

ri · cj 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

So there is only one group of order 3, as claimed.
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