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Week 6 UCSB 2014

It ain’t what they call you, it’s what you answer to.

W. C. Fields

1 Fields

In the next two weeks, we’re going to study fields; a mathematical object that on one hand
is a relatively simple generalization of the ideas behind groups, but on the other will allow
us to understand a variety of beautiful mathematical concepts and applications. We start
here with the basics:

1.1 Definitions and properties.

Definition. A field is any set F along with two binary operations ·,+ : F × F → F, that
satisfy the following properties:

• Closure(+): ∀a, b ∈ F, we have a+b ∈
F.

• Identity(+): ∃0 ∈ F such that ∀a ∈ F,
0 + a = a.

• Commutativity(+): ∀a, b ∈ F, a +
b = b+ a.

• Associativity(+): ∀a, b, c ∈ F, (a +
b) + c = a+ (b+ c).

• Inverse(+): ∀a ∈ F,∃(−a) ∈ F such
that a+ (−a) = 0.

• Closure(·): ∀a, b ∈ F, we have a · b ∈
F.

• Identity(·): ∃1 6= 0 ∈ F such that
∀a ∈ F, 1 · a = a.

• Commutativity(·): ∀a, b ∈ F, a · b =
b · a.

• Associativity(·): ∀a, b, c ∈ F, (a · b) ·
c = a · (b · c).

• Inverse(·): ∀a 6= 0 ∈ F, ∃a−1 ∈ F such
that a · a−1 = 1.

• Distributivity: (+, ·) : ∀a, b, c ∈ F, (a+ b) · c = (a · c) + (b · c)

In a sense, a field is pretty much a set F that is a commutative group in two ways at
the same time: that is, it is a group with respect to addition, and it is also a group with
respect to multiplication if you ignore the additive identity 0!

One question that you might naturally ask here is why 0 is considered special: that is,
when we’re writing up our axioms, why did we make the “inverses(·)” property only need
to hold for nonzero elements? There are two natural answers here. The first, which comes
from more of a utilitarian approach, is to ask where our notions for any of these properties
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for a field come from! In practice, much like how the group axioms came naturally from
looking at objects like 〈Z/nZ,+〉, 〈Sn, ◦〉, and 〈Z,+〉 and noticing certain nice properties
those objects had, we could have derived the field axioms from looking at some of the
most commonly-occurring number systems we work with: 〈R,+, ·〉 , 〈Q,+, ·〉 , and 〈C,+, ·〉
are all fields! Furthermore, in all three of those objects, we have that 0 is some sort of an
“annihilating element” with respect to multiplication: that is, ∀a, 0 · a = 0. So it would be
unreasonable to expect 0 to have a multiplicative inverse!

Another perspective to take here, however, would be to question whether it is even
possible for 0 to have a multiplicative inverse. That is: suppose that we had any object
that satisfies the axioms above. Is it possible for such an object to also have a multiplicative
inverse for 0? Or is this something that we can prove is impossible?

The answer here turns out to be yes:

Claim. Suppose that 〈F,+, ·〉 is a field. Then, for all a ∈ F, 0 · a = 0. Consequently,
because 0 6= 1 (as stated in our definition of the multiplicative inverse,) 0 does not have a
multiplicative inverse.

Proof. Take any a ∈ F. Because of the closure(·) property, we know that 0 · a is also a field
element. Trivially, we know that

0 · a = 0 · a.

We also know that 0 is an additive identity: therefore, in specific, we know that 0 = 0 + 0,
and therefore that

0 · a = (0 + 0) · a.

Applying the distributive property then tells us that

0 · a = (0 + 0) · a = (0 · a) + (0 · a).

Now, we can use the inverse(+) property to tell us that because 0 · a is a field element, we
also know that there is some other field element−(0 · a) such that (0 · a) + (−(0 · a)) = 0.
Then, if we add this to both sides of our equality above, we get

(0 · a) + (−(0 · a)) = ((0 · a) + (0 · a)) + (−(0 · a)).

Applying the inverse property to the left hand side tells us that it’s 0; applying the asso-
ciative property to the right side tells us that

0 = ((0 · a) + (0 · a)) + (−(0 · a)) = (0 · a) + ((0 · a) + (−(0 · a))) = (0 · a) + 0 = (0 · a),

by applying first the inverse property and then the additive identity property to make the
+0 go away. Therefore, we’ve proven that for any a ∈ F, we have

0 = 0 · a.
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Using similar techniques, we can prove other results, like the following:

Claim. For any a ∈ F, we have that (−a) = (−1) · a. In other words, we can create the
additive inverse of any element by multiplying it by the additive inverse of 1.

Proof. By the multiplicative identity property, we know that 1 ∈ F; by the additive inverse
property, we then also know that −1 ∈ F and that

0 = 1 + (−1).

Using closure, distributivity, and the multiplicative identity property, we can take any a
and multiply it by the left and right hand sides above:

0 · a = (1 + (−1)) · a = 1 · a+ (−1) · a = a+ (−1) · a).

Using our result above, we know that 0 · a = 0, and therefore that

0 = a+ (−1) · a).

Using the additive inverse property and closure, we know that −a is an field element and
that we can add it to the left and right hand sides above:

(−a) + 0 = (−a) + (a+ (−1) · a) .

Using the additive identity property at left and associativity/inverses/the additive identity
at right gives us

(−a) = ((−a) + a) + (−1) · a = 0 + (−1) · a = (−1) · a,

which is what we claimed.

1.2 Finite fields: first examples.

This, however, is not what this class is focused on. As combinatorialists, our first question
about an object once we understand it even slightly is always “How many of them are
there?”, perhaps followed-up by the question “Are there any finite examples?” We try to
answer these questions in this section.

Let’s start with the second one. Do we know of any objects that are finite commu-
tative groups with respect to two operations +, · at the same time, if we ignore 0 for the
multiplicative operation? If you think for a while, you’ll see that the answer is yes:

Theorem. 〈Z/nZ,+, ·〉 is a field if and only if n is a prime number.

Proof. In week 4, we proved that 〈Z/nZ,+〉 satisfied the axioms for a commutative group
for any n, and also saw that 〈(Z/nZ)×, ·〉 satisfied the axioms for a commutative group if
and only if n is prime. As a result, we know that 〈Z/nZ,+, ·〉 is not a field if n is not a
prime number, and only need to check distributivity to see that 〈Z/nZ,+, ·〉 is a field if n
is prime.

Distributivity, however, is not hard to check! In particular, we know that the integers
are distributive (as discussed in Intro to Higher Math / is not a difficult thing to check,

3



once you figure out what plus and times really mean!) Therefore, we know that for any
a, b, c ∈ Z, we have

a · (b+ c) = (a · b) + (a · c).

But if any two numbers are equal, they are certainly equal mod n for any n, as their
difference is 0 (which is always a multiple of n. Therefore, for any a, b, c ∈ Z/nZ, we have

a · (b+ c) ≡ (a · b) + (a · c) mod n,

which is precisely the distributive property.
As a side note: this proof method, where we argue that a certain property is “inherited”

from a larger structure, is a very common one. Whenever you can in mathematics, look for
shortcuts like this — they save time in your proofs, make your proofs clearer, and actually
make them more enlightening as well (because the reader now knows where this property
came from, instead of just believing that it magically held true for some random reason!)

If we call the number of elements in a field its order, just like with groups, we now have
the following result:

Theorem. There is a field of order p for any prime p.

This raises a natural question: are there other sizes of fields possible? Let’s check!
It’s immediate that there are no finite fields of order 1, because any finite field must

contain two distinct elements 0 6= 1, as stated in our axioms. So the first case to actually
consider is whether a finite field of order 4 exists.

Before we decide whether or not this is possible, let’s try to think about what any
such object F4 should look like! At first, we can describe its elements without losing any
generality as {0, 1, a, b} for two nonidentity elements a, b, because we have four elements
total and two are identities for our two operations.

What else can we say? On one hand, we know that F4 should be a group with respect
to multiplication, if we remove the 0 element from it. Recall, however, Lagrange’s theorem
from our past lectures:

Theorem. For any finite group G and subgroup H, we have that |H| divides G.

In particular, suppose that G is a group of prime order and that H is the subgroup generated
by any nonidentity element a of G. Then the statement that |〈a〉| divides |G| is just the
statement that |〈a〉| = |G|, because the only number that divides a prime that is not 1 is
that prime itself! Consequently, we have the following corollary to Lagrange’s theorem:

Corollary. If G is a finite group of order p, for some prime p, and a is any nonidentity
element in G, then G = 〈a〉 = {id, a, a2, . . . ap−1}.

Apply this corollary to F4: because F4 \ {0} is a three-element set, it is in particular a
group under multiplication of prime order! Therefore, it has the form {1, a, a2}, and thus
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we actually know F4’s multiplication table!

〈F4, ·〉 0 1 a a2

0 0 0 0 0

1 0 1 a a2

a 0 a a2 1

a2 0 a2 1 a

Checking this lets us verify the multiplication-field properties of F4. So it suffices to figure
out how to fill in the addition table as well, and then to use this to check our additive
properties! Let’s start by filling in what we know:

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1

a a

a2 a2

We know that addition is a group operation on F4. Therefore, we know in particular
that we cannot have any repetitions in any of our rows or columns! As well, we know that
if our field is to be distributive, we need to insure that

a+ b = c⇒ ∀d, d(a+ b) = d · c.

But what does this mean for our table as currently constructed? Well: if I determine a
value for (1 + 1), say (1 + 1) = x, then distributivity tells me that I’ve set (a+ a) = ax and
(a2+a2) = a2x! As well, if I tell you that (1+a) = y, you could conclude that (a+a2) = ay
and (a2 + 1) = a2y. In general, if I tell you what any of the cells corresponding to non-
identity elements are in this table, then distributivity tells us how to fill in the diagonal
that contains that entire cell! For example, suppose that we decided that (1 + 1) = a; then
we would have

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 a

a a

a2 a2

⇒

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 a

a a a2

a2 a2 1

Is this possible? Well: consider the column corresponding to a. It must contain a 1, because
every symbol shows up in each column/row exactly once. But it cannot contain a 1 in its
second cell, as there’s already a 1 in that row; as well, it cannot contain a 1 in its last cell,
as there’s also a 1 in that row!

Therefore, we can conclude that 1 + 1 6= a! Similarly, if we try out 1 + 1 = a2, we run
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into similar problems:

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 a2

a a

a2 a2

⇒

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 a2

a a 1

a2 a2 a

Here, there is no way to place the symbol a2 into a’s column, which again creates a problem.
Therefore, we know that the only thing that might work is 1 + 1 = 0;

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 0

a a

a2 a2

⇒

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 0

a a 0

a2 a2 0

If we use the observation that we cannot have any repetitions in any row or column, we
can conclude that the other two cells in this row must be a2 and a, in that order:

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 0 a2 a

a a 0

a2 a2 0

Now, if we want to insure that we have distributivity through our entire array, we can
use this “diagonals” trick on these two entries to fill in the rest of our array:

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 0 a2 a

a a 0

a2 a2 0

⇒

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 0 a2 a

a a a2 0 1

a2 a2 a 1 0

Because we filled in this array via the distributive property, we know that we have satisfied
distributivity; as well, we made 0 the identity and can see that 0 is in every row and column
(and this that we have inverses!) As well, our array is symmetric over the main diagonal,
so we have commutativity; this leaves just associativity to check!

This, ordinarily, would be difficult. To check it quicker, we can observe that we already
have worked with this group! Consider the map ϕ : F4 → (Z2Z)2 that sends 0→ (0, 0), 1→
(1, 1), a→ (0, 1), a2 → (1, 0):

〈F4,+〉 0 1 a a2

0 0 1 a a2

1 1 0 a2 a

a a a2 0 1

a2 a2 a 1 0

ϕ←→

〈(Z2Z)2,+〉 (0, 0) (1, 1) (0, 1) (1, 0)

(0, 0) (0, 0) (1, 1) (0, 1) (1, 0)

(1, 1) (1, 1) (0, 0) (1, 0) (0, 1)

(0, 1) (0, 1) (1, 0) (0, 0) (1, 1)

(1, 0) (1, 0) (0, 1) (1, 1) (0, 0)

6



Using this map, we can see that 〈F4,+〉 is isomorphic to 〈(Z2Z)2,+〉: this is because φ is
a bijection that is compatible with the group tables of our two objects! In particular, this
tells us that because 〈(Z2Z)2,+〉 is a group (as shown before in class,) it is in particular
associative, and therefore that 〈F4,+〉 is also associative and a group!

This finishes checking all of the properties needed to be a field; therefore, we have proven
the following result:

Theorem. There is a field of order 4.

Using similar methods, we can explore the next nonprime value, 6, that comes up. We
can again note that if such a field were to exist, its five nonzero elements would have to form
a multiplicative group. Because 5 is prime, we can conclude that this group is of the form
{1, a, a2, a3, a4} for some nonzero and non-one element a! This gives us our multiplication
operation, and leaves us with just the task of determining how addition might work out:

〈F6,+〉 0 1 a a2 a3 a4

0 0 1 a a2 a3 a4

1 1

a a

a2 a2

a3 a3

a4 a4

Once again, we can consider what values can go in the cell corresponding to (1+1). Initially,
it may seem like we can place any value we want here. However, notice the following
observations:

a4(1 + a) = 1 + a4, a3(1 + a2) = 1 + a3.

Consequently, we know that if the 1 + a cell in the first row is 0, so is the (1 + a4) cell!
Because values are not repeated in any row, this is impossible. Similarly, we know that it
is impossible for the (1 + a2), (1 + a3), (1 + a4) cells in this row to be nonzero, which leaves
us with the (1, 1) cell as the only possible zero-containing cell. Therefore, it must contain
zero, as zero must show up in every row and column!

Distributivity then gives us the following structure:

〈F6,+〉 0 1 a a2 a3 a4

0 0 1 a a2 a3 a4

1 1 0

a a 0

a2 a2 0

a3 a3 0

a4 a4 0

You could then try to fill in the rest of this array, but I claim that we already have a
contradiction to our field axioms! To see it, consider the following set of elements:

H = {0, 1, a, 1 + a}.
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We claim that if 〈F6,+〉 is a commutative group, then H is a subgroup of this group.
To see why, we just need to check that this subset contains the identity, inverses, and

is closed. It contains 0, so we have the identity; similarly, because 1 + 1 = 0, a+ a = 0 and
we’re associative/commutative, we have that (1 + a) + (1 + a) = 1 + 1 + a+ a = 0 + 0 = 0.
Therefore we contain inverses! Similarly, this set is closed under addition, which we can
check by casework; we already know that 0+ anything stays in our set, and that anything
plus itself is 0 and thus stays in our set. By commutativity, we only have the three remaining
cases to check:

• (1) + (a) = 1 + a,

• (1 + a) + (a) = 1 + a+ a = 1,

• (1 + a) + (1) = 1 + 1 + a = 1.

So we’re a subgroup!
However, we are a subgroup of size 4, for a group of size 6. We proved that the size of any

subgroup must divide the order of our group: consequently, we must have a contradiction
somewhere! The only assumption we made thus far was that 〈F6,+〉 is a commutative
group; therefore this cannot be possible.

Therefore, we have found a problem with any possible finite field of order 6! Conse-
quently, we have the following result:

Theorem. There is no finite field of order 6.

While this is satisfying, we will want stronger and more general methods to get further
results on finite fields. We develop those in the next section:

1.3 Polynomials and finite fields.

Consider the collection of all polynomials with real-valued coefficients, which we denote as
R[x]. Take any polynomial h(x) ∈ R[x].

Consider the following relation:

≡h:= {(f(x), g(x)) | ∃q(x) ∈ R[x], f(x)− g(x) = q(x)h(x)}.

For example, if h(x) = x − 2, we would say that f(x) = x2 − 4 is equivalent to g(x) =
x2 − 3x+ 2, because

f(x)− g(x) = x2 − 4− (x2 − 3x+ 2) = 3x− 6 = 3(x− 2) = 3h(x).

This is an equivalence relation! To see this, we just check for reflexivity, symmetry and
transitivity.

Reflexivity: For any f(x), we want f(x) ≡h f(x) to hold. But this is equivalent to
asking that for any f(x), f(x)− f(x) = 0 is a multiple of h(x): this is true!

Symmetry: We want to show that if f(x) ≡h g(x), then g(x) ≡h f(x). But this is easy
to check: if f(x) ≡h g(x), then we can write f(x)− g(x) as some multiple q(x)h(x) of h(x).
But this means that g(x) − f(x) = −q(x)h(x) is also a multiple of h(x): in other words,
that g(x) ≡h f(x).
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Transitivity: Suppose that f(x) ≡ g(x) and g(x) ≡h j(x). We want to show that
f(x) ≡h j(x). This is similar to the above. Notice that by definition, there must be
two polynomials q(x), r(x) such that f(x) − g(x) = q(x)h(x) and g(x) − j(x) = r(x)h(x).
Consequently, we have f(x) − g(x) + g(x) − j(x) = f(x) − j(x) = (q(x) + r(x))h(x). In
other words, f(x)− j(x) is a multiple of h(x). So we have f(x) ≡h j(x), as desired!

Given any polynomial h(x) = h0 + h1x + . . . + hnx
n of degree n, we can use this

equivalence relation to form the algebraic object 〈R[x]/h(x),+, ·〉, defined as follows:

• The set here is the collection of all polynomials with degree at most n − 1. Notice
that any element p(x)of R[x] is equivalent to some polynomial with degree at most
n− 1, which we can prove by induction on the degree of p(x):

– Base case: if the degree of p(x) is at most n− 1, we’re trivially done.

– Inductive step: assume that we can do this for any polynomial of degree at most
m − 1, and take any polynomial p(x) = p0 + p1x + . . . pmx

m of degree m, for
m ≥ n. This polynomial is equivalent to p(x)− pm

hn
xm−nh(x), because they only

differ by a multiple of h(x)! However, this p(x) − pm
hn
xm−nh(x) has degree at

most m− 1; therefore by induction it is equivalent to some polynomial of degree
at most n−1. Therefore, by transitivity, p(x) itself is equivalent to a polynomial
of degree at most n− 1, as claimed.

Moreover, notice that no two distinct polynomials p(x), q(x) of degree at most n−1 are
equivalent. This is because the claim that p(x) ≡h(x) q(x) is equivalent to p(x)− q(x)
being a multiple of h(x). Because the degree of p(x)− q(x) is less than that of h(x),
the only multiple possible of h(x) is 0. Therefore we have p(x) = q(x) and thus that
no two distinct polynomials of degree at most n− 1 are equivalent, as claimed.

• We define addition for any three polynomials p(x), q(x), r(x) in our set as follows: set
p(x) + q(x) ≡h(x) r(x) if and only if p(x) + q(x), r(x) differ by a multiple of h(x).
Because any polynomial has a unique representative in our set, as proven above, this
operation is defined for any two polynomials and has a unique and well-defined output
in our set.

• Multiplication is defined similarly.

This raises a natural question: is this structure a field? We explore this in two examples:

Example. The structure 〈R[x]/h(x),+, ·〉, for h(x) = (x2 − 2x+ 1), is not a field.

Proof. We first notice that many of the properties of a field come to us for “free.” For
example, because R[x], the collection of polynomials with real coefficients, satisfies asso-
ciativity and commutativity for both addition and multiplication, has an additive identity
0 and a multiplicative identity 1, and has distributivity, we get to “inherit” all of these
properties! This is because (just like with modular arithmetic) equality implies equivalence
mod anything: that is, if we know two polynomial expressions are equal, then they are
certainly equivalent up to any h(x)! (We actually proved this; this was reflexivity!)

So, because 0, 1 are polynomials of degree at most 1, we have everything except for
perhaps additive and multiplicative inverses in 〈R[x]/(x2 − 2x+ 1),+, ·〉.
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Additive inverses are immediate: take any element of 〈R[x]/h(x),+, ·〉. It looks like a+bx
for some a, b ∈ R; therefore, because (−a) + (−b)x is also a degree-at-most-1 polynomial,
we know that we have a+ bx’s inverse in our set, as (a+ bx) + (−a− bx) = 0. In fact, this
proof holds in general: if we look at the collection of all polynomials of degree at most n
with coefficients in some field, we will always have additive inverses, because our coefficients
have additive inverses!

Multiplicative inverses are the only interesting property to check. We first note that in
fact, some elements do have multiplicative inverses! Take 1 + 2x as an example. Notice
that for any a+ bx in our set, we have

(1 + 2x)(a+ bx) = a+ (2a+ b)x+ 2bx2.

However, because x2− 2x+ 1 ≡h(x) 0 in our set (because for any h(x), h(x) is a multiple of
itself!), we have that in fact x2 ≡h(x) 2x− 1, and therefore that

(1 + 2x)(a+ bx) = a+ (2a+ b)x+ 2bx2 ≡h(x) (a− 2b) + (2a+ 5b)x.

So: if we want this to be equivalent to 1, we want 2a+ 5b = 0 and a−2b = 1. Solving these
equations gives us a = 5

9 , b = −2
9 ; and indeed, we can check that

(1 + 2x)

(
5

9
− 2

9
x

)
=

5

9
+

(
10

9
− 4

9

)
x− 4

9
x2 ≡h(x)

5

9
+

(
10

9
− 4

9

)
x− 4

9
(2x− 1) = 1.

However, other elements do not have inverses! Namely, consider (x−1), and in particular
notice that h(x) = (x− 1)2. Consequently, we know that

(x− 1)2 ≡h(x) 0.

So can (x − 1) have an inverse? Well: if it did have some inverse (a + bx), then we would
have

(a+ bx)2(x− 1)2 ≡h(x) 1 · 1 = 1.

But

(a+ bx)2(x− 1)2 ≡h(x) (a+ bx)2 · 0,

and 1 6= 0! So this is impossible, and therefore this is not a field.

However, it is possible for this construction to yield a field:

Example. The structure 〈R[x]/h(x),+, ·〉, for h(x) = (x2 + 1), is a field.

Proof. As before, the only interesting thing to check is whether or not we have multiplicative
inverses. Unlike last time, h(x) doesn’t factor into linear polynomials — therefore, we might
hope that we have a chance!

In fact, we do. Take any a+ bx 6= 0, and notice that

(a+ bx) ·
(

a

a2 + b2
− b

a2 + b2
x

)
=
a2 − b2x2

a2 + b2
.
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But x2 + 1 ≡h(x)= 0 implies that x2 ≡h(x) −1; so we have that

(a+ bx) ·
(

a

a2 + b2
− b

a2 + b2
x

)
=
a2 − b2x2

a2 + b2
≡h(x)

a2 + b2

a2 + b2
= 1,

and therefore that a+ bx has an inverse, for any nonzero a+ bx!
Therefore, this is a field!

I claim that this is actually a field you’ve seen before: to see why, consider when you’ve
interacted with some object of the form

{a+ bx | a, b ∈ R, x2 = −1}.

. . . it’s the complex numbers! That is:

C = {a+ bi | a, b ∈ R, i2 = −1}

is precisely this set. (In fact, this is what motivated us to derive the inverse formula we came
up with above, though you could have certainly just solved the equation (a+bx)(c+dx) ≡h(x)

1 for c, d in terms of a, b if you didn’t see this.)
The difference between our successful example and our nonsuccessful example is like the

difference between Z/14Z and Z/11Z in being fields!
In the first case, even though some elements have inverses (i.e 9 · 11 ≡ 1mod14), others

do not (7 has no multiplicative inverse mod 14) — in particular, the elements that are
factors of 14 don’t have inverses! Therefore, Z/14Z is not a field, and in fact in general
Z/nZ for any composite n is not a field.

This is like the issues with 〈R[x]/h(x),+, ·〉 for h(x) = (x2 − 2x+ 1); this failed to be a
field because h(x) had nontrivial factors!

Meanwhile, in the second case, there are no nontrivial factors of 11 that occur in Z/11Z,
because 11 is prime! Consequently, as shown before Z/11Z is a field!

In a sense, this is why 〈R[x]/h(x),+, ·〉, for h(x) = (x2 + 1) was a field: x2 + 1 had no
factors!

Motivated by this, we would hope that in general, “modding out by factor-less polyno-
mials” is a process that will help us make fields! Because “factor-less” is an awkward word,
let’s define this concept:

Definition. Call a polynomial p(x) irreducible if its only factors are 1 and itself.

In the next section, we use this concept to make finite fields. To do so, we will need to
borrow one result from abstract algebra, that is not hard to prove but doesn’t really belong
in a discrete mathematics class:

Theorem. Suppose that F is a field, and F [x] is the collection of all polynomials with co-
efficients in that field. Then any polynomial in this field can be decomposed into irreducible
polynomial factors; moreover, this factorization is unique!

In this sense, irreducible polynomials really are like primes; we can build any polynomial
out of them, and any polynomial uniquely factors into a product of such irreducibles!
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1.4 Polynomials over Z/pZ.

Definition. For ease of notation, let Fp denote Z/pZ; with this notation, we get to em-
phasize that we are thinking of Z/pZ as a field (and also get to type a lot less.)

Definition. Let Fp[x] denote the collection of all polynomials with coefficients in Fp, where
arithmetic is all done mod p.

Example. For example, in F2[x], we have 8 polynomials of degree at most 2:

0, 1, x, 1 + x, x2, 1 + x2, x+ x2, 1 + x+ x2,

because each of the powers of x has two choices of coefficient (0 or 1.)
Arithmetic here is done mod 2: that is,

(1 + x) + (1 + x+ x2) = x2,

because 2 + 2x = 0 + 0x = 0 mod 2. Similarly,

(1 + x)2 = 1 + 2x+ x2 = 1 + x2,

because again 2x = 0x in mod 2.

This does something surprising, in that x2 + 1 is no longer an irreducible polynomial!
In fact, if we check the various degree-2 polynomials in F2[x], we can see that there is only
one irreducible polynomial: x2 +x+1, which cannot be written as the product of any other
polynomials. (Check this by looking at all possible products of smaller-degree polynomials!)

We can define equivalence on Fp[x] up to some element h(x) ∈ Fp[x] in the same way as
we did before:

≡h:= {(f(x), g(x)) | ∃q(x) ∈ Fp[x], f(x)− g(x) = q(x)h(x)}.

As before, this is an equivalence relation, and as before to check if any Fp[x]/h(x) is a field,
the only interesting thing to check is multiplicative inverses!

We give one concrete example as a warm-up:

Proposition. F2[x]/h(x) is a field of order 4, for h(x) = x2 + x+ 1.

Theorem. Again, notice that because we’ve modded out by a a degree-2 polynomial, the
only elements that remain are degree 0 or 1. In other words, we only have four elements in
our set: 0, 1, x, 1 + x.

By the exact same logic as in our R[x] arguments above, our only interesting task is to
determine whether multiplicative inverses exist — everything else is inherited from F2[x]
“for free,” via identical reasoning to what we did before.

To finish our proof, then, we just calculate the multiplication table. All calculations
below are done both mod 2 (so 2x = 0x, 2 = 0) and mod x2+x+1 (so x2 = −x−1 = x+1):

〈F2[x]/(x2 + x+ 1), ·〉 0 1 x 1 + x

0 0 0 0 0

1 0 1 x 1 + x

x 0 x 1 + x 1

1 + x 0 1 + x 1 x

There is a 1 in every nonzero row and column; thus we have inverses, as claimed!
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We can in fact generalize this process much further:

Proposition. Suppose that h(x) is an irreducible polynomial in Fp[x] of degree n. Then
Fp[x]/h(x) is a field of order pn.

Theorem. Once again, we need to simply show that every element has a multiplicative
inverse, as everything else is done for us by our earlier arguments.

We proceed here by contradiction. Suppose not: that there was some q(x) 6= 0 in
Fp[x]/h(x) that has no inverse. Then, if we look at the row corresponding to q(x) in the
multiplication table of Fp[x]/h(x), there is no 1-element! Consequently, because there are
as many cells in this row as there are elements in Fp[x]/h(x), and we are omitting one
element from this row, the pigeonhole principle tells us that some element in this row must
be repeated at least twice! In other words, there are polynomials f(x) 6= g(x) such that

f(x)q(x) ≡h(x) g(x)q(x).

But this is equivalent to asking that

(f(x)− g(x))q(x) ≡h(x) 0;

in other words, that (f(x)− g(x))q(x) is a multiple of h(x).
Is this possible? Well: we know that h(x) is irreducible. Therefore, if (f(x)− g(x))q(x)

is a multiple of h(x), then h(x) is a factor of either q(x) or f(x)−g(x)! However, q(x), f(x)−
g(x) are both polynomials of degree strictly smaller than h(x); therefore the only way in
which this is possible is if one of q(x), f(x)− g(x) are zero. But we assumed that q(x) 6= 0
and that f(x) 6= g(x); so neither is zero!

This gives us a contradiction; consequently, q(x) must have had an inverse! Therefore,
Fp[x]/h(x) is a field, as claimed.

This gives us lots of potential finite field sizes! In our next week’s talks, in fact, we will
attempt to prove the following theorem:

Theorem. For any n and p, there is an irreducible polynomial of degree n in Fp[x].

This theorem, if we can prove it, will give us the following corollary:

Corollary. For any prime p and positive integer n, there is a finite field of order pn.

Once we get to linear algebra, we’ll be able to strengthen this theorem as follows:

Theorem. There is a field of order k if and only if k is a prime power; that is, all finite
fields have order pn for some prime p and positive integer n.

But that will need to wait until week 10 (or perhaps next quarter, depending on how things
go!)
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