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Ayant vu que toutes [les] méthodes que nous avons
exposées jusqu’ici ne sauroient fournir aucun quarré
magique pour le cas de n = 6 et que la méme conclusion
semble s’étendre a tous les nombres impairement pairs de
n, on pourroit croire que, si de tels quarrés sont possibles,
les quarreés latins qui leur servent de base, ne suivant
aucun des ordes que nous venons de considérer, seroient
tout a fait irréguliers. Il faudroit donc examiner tous les
cas possibles de tels quarrés latins pour le cas de n = 6,
dont le nombre est sans doubte extremement grand.

Euler, Recherches

This was a short talk I gave on Wednesday about some applications of finite fields to
Latin squares! This isn’t something that will show up on any of the required HW; it’s
mostly here for fun, so that people who were around on Wednesday got to see some fun
stuff and eat pie! (Also because Latin squares are the best things ever.)

We start with some definitions:

1 Latin Squares: Definitions

Definition. A Latin square of order n is a n x n array filled with n distinct symbols (by
convention {1,...n}), such that no symbol is repeated twice in any row or column.

Example. Here are all of the Latin squares of order 2:
1 2 2 1
2 1 1 2|
A quick observation we should make is the following;:

Proposition. Latin squares exist for all n.

Proof. Behold!



Given this observation, a natural question to ask might be “How many Latin squares
exist of a given order n?” And indeed, this is an excellent question! So excellent, in fact,
that it turns out that we have no idea what the answer to it is; indeed, we only know the

exact number of Latin squares of any given order up to 11!

n reduced Latin squares of size n' all Latin squares of size n

1 1 1

2 1 2

3 1 12

4 4 576

5 56 161280

6 9408 812851200

7 16942080 61479419904000

8 535281401856 108776032459082956800

9 377597570964258816 5524751496156892842531225600

10 7580721483160132811489280 9982437658213039871725064756920320000
11 | 5363937773277371298119673540771840 | 776966836171770144107444346734230682311065600000
12 ? ?

Asymptotically, the best we know (and you could show, given a lot of linear algebra tools)
that

s~ (2)”

2 Mutually Orthogonal Latin Squares

To understand how finite fields apply to Latin squares, try solving the following problem:

Question. Take a deck of playing cards, and remove the 16 aces, kings, queens, and jacks
from the deck. Can you arrange these cards into a 4 x 4 array, so that in each column and
row, no two cards share the same suit or same face value?

This question should feel similar to the problem of constructing a Latin square: we have
an array, and we want to fill it with symbols that are not repeated in any row or column.
However, we have the additional constraint that we’re actually putting two symbols in
every cell: one corresponding to a suit, and another corresponding to a face value.

So: if we just look at the face values, we should get a 4 x 4 Latin square. Similarly,
if we ignore the face values and look only at the suits, we should have a different 4 x 4
Latin square; as well, these two Latin squares ought to have the property that when we
superimpose them (i.e. place one on top of the other), each of the resulting possible 16
pairs of symbols occurs exactly once (because we started with 16 distinct cards.)

(A reduced Latin square of size n is a Latin square where the first column and row are both
(1,2,3...n).)



You can do this! Here is one possible solution:

AQ | KO | Qb | &
K& | A& | JO [ QO
Ok | b | AS | KO
JO QU [ K& | Al

The generalization of this idea is to the concept of orthogonality” for Latin squares,
which we define here:

Definition. A pair of n x n Latin squares are called orthogonal if when we superimpose
them (i.e. place one on top of the other), each of the possible n? ordered pairs of symbols
occur exactly once.

A collection of £ n x n Latin squares is called mutually orthogonal if every pair of
Latin squares in our collection is orthogonal.

Example. The grid of playing cards weou constructed earlier if you answered our first
question is a pair of 4 x 4 squares, for the reasons we discussed earlier. To further illustrate
the idea, we present a pair of orthogonal 3 x 3 Latin squares:

1 23] [1 2 3 1,1
2 3 1|,[3 1 2| — [(2,3)
31 2] |2 31

Like always, whenever we introduce a mathematical concept in combinatorics, our first
instinct should be to attempt to count it! In other words: given an order n, what is the
largest collection of mutually orthogonal Latin squares we can find? An upper bound is not
too hard to find:

Proposition. For any n, the maximum size of a set of n x n mutually orthogonal Latin
squares is n — 1.

Proof. Take any collection 77, ... Ty of mutually orthogonal Latin squares. Then notice the
following property: if we take any of our Latin squares and permute its symbols (i.e. switch
all the 1 and 2’s), the new square is still mutually orthogonal to all of the other squares.
(Think about this for a bit if you are unpersuaded.)

Using the above observation, notice that we can without any loss of generality assume
that the first row of each of our Latin squares is (1,2,3...n). Now, take any pair of mutually
orthogonal Latin squares from our collection, and look at the symbol in the cell in the first
column/second row (i.e. the symbol at (2,1)):

2This idea has no obvious corresponding geometric context; just think of it as a name for now.



We know that neither x nor y can be 1, because both of these squares are Latin squares.
As well, we know that they cannot agree, as the first row of the superimposition of these
two squares contains the pairs (k, k) , for every 1 < k < n. This means that there are at
most n — 1 squares in our collection 17, ... T}, because there are n — 1 distinct choices for
the cell (2,1) that are not 1. [

We already know that sometimes n — 1 is attainable: in our example above, we found 2
orthogonal Latin squares of order 3. When can we attain this bound?

Perhaps surprisingly, the answer to this question is intimately related to the concept of
finite fields! Specifically, we have the following theorem

Proposition. Let F' be a finite field that contains n elements. Then there is a collection
of n — 1 mutually orthogonal Latin squares.

Proof. For simplicity’s sake, enumerate the elements F as { fo, f1 ... fn—1}, such that fo =0
and f; = 1. Now, notice the following fact: if ¢ € F' is nonzero, then the grid

afo+fo afi+fo ... afn1+fo
afo+ f1 afi+fi ... afp1+fi
afo + fa—1 afi + fac1 oo afpt + fn—1

where we fill the cell (4, j) with af; + f;, is in fact a Latin square! To see why, suppose that
there is some row i along which two cells (7, j) and (i, k) of this grid are the same: i.e. that

afi+ fj =afi+ fk
= a(fi— fi) = (fr = f})
=0=(fx — fj)

= [ = Ik

and therefore that j = k and that these two cells are the same. Similarly, if we pick any
column j along which two cells (i,7) and (k, j) of this grid are the same, we get

afi+ fi=afx+ f;
= a(fi = fx) = (fi = f3)

=a(fi—fx)=0
= fi—fk=0

and can again conclude that these two cells were the same.
This generates n — 1 distinct Latin squares: label them Ty, for every element a € F. We
claim that this is fact a set of mutually orthogonal Latin squares! To see why, take any two



squares Ty, Tp, and suppose that there are two cells (i, j), (k, 1) at which superimposing our
two Latin squares yields the same ordered pair of symbols: i.e. that

afi+ fi=afy+ frand bf; + f; = bfi + fi.

Taking the difference of these two equations yields

(a—b)fi = (a—0b)fx
= fi = fi;

plugging this into our earlier equations yields f; = f;, and therefore that these two cells are
the same. Therefore, this is a set of n — 1 mutually orthogonal Latin squares! L]

We give an example of this construction here:

Construction. Given a finite field F', we can form the ring of polynomials over F,
F[z], by simply taking all of the polynomials of the form

ao + a1z + asx® + ... 2",

where the elements a; are all elements in our field F. (We multiply and add these polyno-
mials as we would normally: i.e (a + bz)(c+ dz) = ac+ (be + ad) - x + bd - ¥, where we use
our field to figure out how the multiplication and addition of these elements actually works.

A polynomial in F[z] is called irreducible if there is no way to write it as the product
of two polynomials with smaller degrees. For example, if F' = F, = Z/2Z, the element
22 4+ 1 of F[x] is not irreducible, because (z + 1) - (z +1) =22 +2x+ 1 =22+ 1 mod 2.
However, the polynomial 22 +z + 1 is irreducible in F[x], which you can check by taking all
of the polynomials of smaller degrees, taking their products, and checking that you never
get 22 +x + 1.

Suppose that you take a finite field F', create the ring of polynomials F[z], and then
find an irreducible polynomial g(x) in F[z] that’s irreducible of degree n. By multiplying
by an appropriate constant, make it so that the coefficient of 2™ in g(x) is 1.

Now, take F'[z]|, and regard two polynomials as being the “same” if they differ by a
multiple of g(z). (This is similar to the way we defined Z/nZ by saying that two things are
the same if they differ by a multiple of n.) Call this object F[z]/(g(z)).

This, rather surprisingly, is a finite field with |F|"-many elements.

Example. To illustrate this, take F' = Z/27, and g(x) = 22 + x + 1. The elements of F|[x]
look like

0,1,x,x+1,m2,x2+1,x2+x+1,:63,...

Suppose that we regard two elements in F'[z] to be the same up to a multiple of g(x). Then,
if we take any element h(x) of F[z]| and repeatedly subtract appropriately chosen multiples
of z¥g(x) fromh(x), we can eventually insure that h(z) is a polynomial of degree at most



1. You can check that none of the remaining four elements of F[z] can be turned into each
other via adding/subtracting multiples of 22 + x + 1; therefore, we have

Flz]/{g(x)) ={0,1, 2,z + 1}.

By examining the addition and multiplication tables below, we can easily see that this
forms a field:

+ 0 1 r x4+l - o 1 x4+l
0 0 1 T z+1 0 0 0 0 0

1 1 0 r+1 r 1 0 1 T rz+1,
T x z+1 0 1 T 0 T z+1 1
z+1|z+1 T 1 0 r+1|0 z+1 1 T

(To check the multiplication table above, in particular, we used the observation that 2
>+ (22 +r+1)=222+r+1=2+1 mod “2,22 + 2+ 1,” and similarly that z(x +1)
L,(x+1)?2=2 mod “2,2% + x4+ 1.”)

A beautiful consequence of this example is that it gives us a way to create three mutually
orthogonal Latin squares of order 4, using our construction from earlier:

0 1 T z+1 0 1 T z+1
o 1 0 r+1 x o T r+1 0 1
=1, 211 o R P 1 0
r+1 x 1 0 1 0 r+1
0 1 T z+1

T |z +1 T 1 0

= 0 z+4+1 =z

T r+1 0 1

These are all orthogonal!

So: with this lecture, we’ve shown (up to a nontrivial result on finite fields!) that
whenever n is a prime power, we have sets of mutually orthogonal Latin squares that are
as large as we could hope for (i.e. n —1.)

Given this, you might hope that we can always find sets of n — 1 mutually orthogonal
Latin squares, for any order n. This turns out to be tragically false:

Theorem. There are no pair of mutually orthogonal Latin squares of order 6.

As far as I know, there are no known proofs of this result that boil down to anything
much more elegant to just brute-force-checking all of the pairs (which, given that there are
6! - 5! - 9,408 distinct Latin squares, is not pleasant. Relatedly, this makes the fact that
this was proved in 1899-1900 by Tarry, long before the advent of computers, even more
impressive.)

In general, we don’t know very much about this question: the maximum number of
mutually orthogonal latin squares of order 10, I believe, is still not known, as is the value
for almost all numbers that are not prime powers (and thus values for which we can make
finite fields!)
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