CCS Discrete III	Professor: Padraic Bartlett	
	Homework 10: Algebra and Graphs	
Due Friday, Week 6	UCSB 2015	

Do three of the following five problems! Have fun!

1. Recall, from last quarter, the following definitions:

Definition. Given two graphs G_{1}, G_{2} with vertex sets V_{1}, V_{2} and edge sets E_{1}, E_{2}, we say that a function $f: V_{1} \rightarrow V_{2}$ is an isomorphism if the following two properties hold:

- f is a bijection.
- (x, y) is an edge in E_{1} if and only if $(f(x), f(y))$ is an edge in E_{2}.

An automorphism on a graph G is an isomorphism from that graph to itself.
Using this definition, we say that a graph G is vertex-transitive if given any two vertices v_{1}, v_{2} of G, there is an automorphism f on G such that $f\left(v_{1}\right)=v_{2}$. In essence, vertextransitive graphs have a lot of symmetry: up to the labeling, we cannot distinguish any two vertices.
Prove that any Cayley graph is a vertex-transitive graph.
2. Prove or disprove: there is a group A such that the Cayley graph G_{A} of A is (after interpreting G_{A} as an undirected ${ }^{1}$ graph) is the Petersen graph.
3. Prove or disprove: there is a group A such that the Cayley graph G_{A} of A, when interpreted as an undirected graph, is a dodecahedron.
4. For any n, find a group G with generating set S such that its Cayley graph (again, interpreted as an undirected graph) is a K_{n}.
5. Let Q_{n} denote the graph corresponding to the n-dimensional unit cube. Find a group G with generating set S such that its Cayley graph (again, interpreted as an undirected graph) is Q_{n}.

[^0]
[^0]: ${ }^{1}$ We do this as follows: take each of the directed graphs above and turn them into undirected graphs $G_{1}^{\prime}, G_{2}^{\prime}$ by "forgetting" the orientations: that is, create an edge $\{x, y\}$ in G^{\prime} if and only if either $(x, y),(y, x)$ or both exist in G. Notice that the resulting graph is not a multigraph, as we only connect any x, y at most once.

