CCS Discrete III

Homework 10: Algebra and Graphs

Due Friday, Week 6

UCSB 2015

Do three of the following five problems! Have fun!

1. Recall, from last quarter, the following definitions:

Definition. Given two graphs G_1, G_2 with vertex sets V_1, V_2 and edge sets E_1, E_2 , we say that a function $f: V_1 \to V_2$ is an **isomorphism** if the following two properties hold:

- f is a bijection.
- (x, y) is an edge in E_1 if and only if (f(x), f(y)) is an edge in E_2 .

An **automorphism** on a graph G is an isomorphism from that graph to itself.

Using this definition, we say that a graph G is **vertex-transitive** if given any two vertices v_1, v_2 of G, there is an automorphism f on G such that $f(v_1) = v_2$. In essence, vertex-transitive graphs have a lot of symmetry: up to the labeling, we cannot distinguish any two vertices.

Prove that any Cayley graph is a vertex-transitive graph.

- 2. Prove or disprove: there is a group A such that the Cayley graph G_A of A is (after interpreting G_A as an undirected¹ graph) is the Petersen graph.
- 3. Prove or disprove: there is a group A such that the Cayley graph G_A of A, when interpreted as an undirected graph, is a dodecahedron.
- 4. For any n, find a group G with generating set S such that its Cayley graph (again, interpreted as an undirected graph) is a K_n .
- 5. Let Q_n denote the graph corresponding to the *n*-dimensional unit cube. Find a group G with generating set S such that its Cayley graph (again, interpreted as an undirected graph) is Q_n .

¹We do this as follows: take each of the directed graphs above and turn them into undirected graphs G'_1, G'_2 by "forgetting" the orientations: that is, create an edge $\{x, y\}$ in G' if and only if either (x, y), (y, x) or both exist in G. Notice that the resulting graph is not a multigraph, as we only connect any x, y at most once.