CCS Discrete III	Professor: Padraic Bartlett	
	Homework 15: Spectral Graph Theory	
Due Friday, Week 9	UCSB 2015	

Choose three problems below to solve!

1. Given a $n \times n$ matrix A, the trace of A is the sum of the entries on the diagonal of A : that is,

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A(i, i) .
$$

(a) Suppose that A is a $n \times n$ matrix that has n eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ (counted with multiplicity.) Prove that $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.
(b) Let G be a finite graph with $n \times n$ adjacency matrix A_{G} and eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ (where each eigenvalue is listed as many times as its multiplicity indicates.)
Prove that $\lambda_{1}^{2}+\ldots \lambda_{n}^{2}$ is a nonnegative integer. What very simple graph property does this sum correspond to?
2. Prove or disprove: there is no graph with $-1 / 2$ as an eigenvalue.
3. Let $K_{n, m}$ be the complete bipartite graph on (n, m) vertices (i.e. $K_{n, m}$ consists of two parts, one with n vertices and the other with m vertices. Every possible edge from one part to the other exists, and no edges exist within one given part.) Find the spectra of $K_{n, m}$.
4. Prove or disprove the following claim: there is some way to partition the edges of the graph K_{10} into three groups, each isomorphic to copies of the Petersen graph.
5. A Latin square is a $n \times n$ array filled with the symbols $\{1 \ldots n\}$, so that there are no repeated symbols in any row or column. Here is an example for when $n=3$:

1	2	3
2	3	1
3	1	2

Given any such square, form its corresponding Latin square graph as follows: create n^{2} vertices, one for each cell in the square. Connect two vertices by an edge whenever one of the three following conditions hold:

- The two cells corresponding to this vertex lie in the same row.
- The two cells corresponding to this vertex lie in the same column.
- The two cells corresponding to this vertex contain the same symbol.

For any $n \geq 3$, prove that this graph is regular with degree $3(n-1)$. Show that this graph has precisely three distinct eigenvalues in its spectrum. What are they?

