Homework 16: Toroidal Graphs

Due Friday, week 10
UCSB 2015

Pick three of the problems in this set to solve! Solutions need justification and proof to receive full credit: i.e. it is not enough to simply draw the answer.

1. In class, we created a way to glue together sides of a square to make a torus:

The picture below shows how to glue together sides of an octagon to create a "two-hole torus:"

(a) Create a way to glue together the sides of a square to get a sphere.
(b) Create a way to glue together the sides of a $4 n$-gon to get a n-hole torus.
(c) Create a way to glue together the opposite sides of a hexagon to get a torus.
2. A graph G drawn on a n-hole torus is called n-toroidal if it satisfies the same definition we gave in class (i.e. we can draw it on a n-hole torus so that no edges intersect and the regions bounded by edges look like open regions of \mathbb{R}^{2}.)
(a) Prove that if G is a 2-toroidal graph, then $V-E+F=-2$.
(b) Generalize the above problem: show that if G is an n-toroidal graph, then $V-E+$ $F=2-2 n$.
3. Suppose that G is planar. Prove that there is a planar embedding of G in the plane where all of the edges are drawn with straight line segments.
4. (a) Show that there is no connected bipartite 3-regular planar graph on 10 vertices.
(b) Show that for any even $n \geq 4, n \neq 5$, there is a connected bipartite 3-regular planar graph on $2 n$ vertices.
5. In class we proved Heawood's formula, which in the case where $g=0$ is the four-color theorem! Explain why our proof fails for $g=0$.

