CCS Discrete IIT Professor: Padraic Bartlett

Due Friday, Week 3 UCSB 2015

Homework 4: More Random Walks

Do three of the following five problems!

1.

In class, we proved that the probability of escape on Z? was at least 1/6. Improve this
bound by proving that pes.(Z3) > 1/3.

. Prove pesc(Z®) < 5/6 (i.e. find an upper bound for our probability of escape!)

. Take any finite collection pi,...p, of polygons. A tiling of R? with such polygons is

any way to place copies of these polygons in the plane, so that they “cover” R? and only
overlap on their edges. (Formally, you can phrase this property as the request that every
point in R? is either contained within the edge of at least one polygon, or within the
interior of exactly one polygon.)

Given any such tiling, we can form a graph, where our vertices are the corners of our
polygons, and we connect two vertices with a graph-edge if there is a polygonal edge
connecting them with no other vertices in between. So, for example, a tiling of the plane
with side-length 1 squares corresponds to the Z2-graph.

Is there any polygonal tiling of R? whose associated graph has a nonzero probability of
escape? Or must a random walker on any polygonal tiling graph return to wherever they
start with probability 17

. Similarly to the above; define a “polytopal tiling” of R? with finitely many three-

dimensional polytopes pi,...p, as a way to cover R3 with polytopes that only overlap
on their edges and faces, and turn these objects into graphs as well. (So, the tiling of R3
with cubes of side length 1 is precisely the Z3-graph.)

Is there any polytopal tiling of R? whose associated graph has a zero probability of
escape? Or, given any polytopal tiling of R?, does a random walker always have a
nonzero chance of escape?

. Take any graph G with distinguished source vertex s and sink vertex t. Define a flow

on GG as any function j : V x V — R on the edges of G that satisfies Kirchoff’s laws at
every vertex other than s,¢: that is,

e For any y € V(G),y # s,t, Z Jay = 0.
yEN(z)
o If {z,y} ¢ E(G), then j,y = 0.

(a) Show that for any circuit C, the current is a flow.

(b) Prove the following “conservation of energy” property: if w : V(G) — R is any
function defined on the vertices of our graph and j is any flow on our graph from



source s to sink ¢ such that js = ZyeN(s) Jsy = 1, then
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(c) Take any circuit C. Define the energy dissipation of this circuit with respect to
any flow j : V x V — R as the following sum:
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Show that the current “minimizes” the total energy dissipation: that is, that if j is
any flow on our circuit with j; = ZseN(y) Jsy = 1s, then
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6. Use problem 5 to prove Rayleigh’s Monotonicity Theorem:

Theorem 1. If any of the individual resistances in a circuit increase, then the overall
effective resistance of the circuit can only increase or stay constant; conversely, if any
of the individual resistances in a circuit decrease, the overall effective resistance of the
circuit can only decrease or stay constant.

Bonus! Find the exact value of pesc(Z3).



