
CCS Discrete III Professor: Padraic Bartlett

Homework 5: More Flows + Zombie Problems

Due Friday, Week 4 UCSB 2015

Do three of the following five problems! Also, some problems are undead (i.e. you’ve seen
them before.) Have fun!

1. Prove a version of the max-flow min-cut theorem that has “minimum” capacities, defined
as follows:

Theorem. Suppose that G is a directed graph with source and sink nodes s, t. Suppose
further that G comes with a capacity function c : V (G)×V (G)→ R∪{∞}. Notice that
c can adopt negative values here, which is different from before1. As before, we say that
a flow f is feasible given these two capacity functions if fxy ≤ cxy for any pair x, y of
vertices in V (G).

Suppose that there is any feasible flow f0 on our graph2. Then there is a maximal flow
with value equal to that of the minimal cut.

2. Using (1), return to the matrix-rounding problem from last week:

Suppose that you have a n×n matrix of real numbers A. Let ci denote the sum of all of
the elements in the i-th column of A, and ri denote the sum of all of the entries in the
i-th row of A. A rounding of A is the act of taking each value aij , ri, cj and rounding
these numbers either up or down to integer values. A rounding is called successful if
in the resulting rounded matrix AR, the row and column sums are the same things as
the values we chose to round the ri, cj ’s to. We give an example of a successful and an

1One natural interpretation of a “negative” capacity is that this is a way to enforce a mandatory minimum
flow! That is: suppose that we have any edge {x, y} such that cyx = −3. What does this mean? Well: it means
that the total flow from y to x must be at most −3; in other words, that the total flow from x to y is at least
3! In particular, if we have any edge {x, y} that we want to enforce a minimum flow of l and a maximum flow
of u from x to y, we can set cxy = u, cyx = l.

Again, this is a natural thing to want to consider; in plumbing, for example, you often want to insure a
minimal amount of flow through your pipes to stop them from bursting when it drops below freezing in the
winter. (This motivation works less well at Santa Barbara than it does where I learned it in Chicago.)

2Unlike before, it is no longer obvious that every graph has a feasible flow: indeed, it is easy to create a
graph that has no feasible flow! For instance, suppose that the mandatory minimum flow from our source to
some vertex v is something huge, while the maximum flow out of v is tiny; this clearly violates Kirchoff’s laws!
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unsuccessful rounding below:

0.6 0.8 2.7 4.1

0.3 1.9 2.7 4.9

2.3 0.4 0.4 3.1

3.2 3.1 5.8

unsuccessful−−−−−−−→
rounding

1 1 3 5

0 2 3 5

2 0 0 3

3 3 6

,

0.6 0.8 2.7 4.1

0.3 1.9 2.7 4.9

2.3 0.4 0.4 3.1

3.2 3.1 5.8

successful−−−−−−−−→
rounding

1 0 3 4

1 2 2 5

2 1 0 3

4 3 5

.

Prove, ideally using the Max-Flow-Min-Cut theorem, that every real-valued n×n matrix
has a successful rounding.

Hint: Make vertices r1, . . . rn for all of the rows and c1, . . . cn for all of the columns. Also
add in a source vertex s and a sink vertex t. Add in edges {s, ri}, {ri, cj}, {cj , t} for all
i, j, with appropriate max/min capacities. Try to find any feasible flow, and then use
(1)!

3. (Problem changed on Saturday from the original, somewhat harder, problem.) Recall
that a tree is any graph that is connected and has no cycles. Given a tree T with a
distinguished “root” vertex r ∈ V (T ), we defined the k-th level of T as the collection of
all vertices that are a path of length k away from the root.

Prove or disprove: there is a tree T with the following properties:

• The k-th level of T contains k2 many vertices, for every k ∈ N.

• T has no “leaf” vertices: that is, every vertex in T has degree at least 2.

• A random walker starting at the root of T returns to the root with probability 1.

4. The König-Egevary theorem is the following result:

Theorem. Let G be a bipartite graph. Let the size of the largest set of disjoint edges
in G – in other words, the size of the largest matching in G – be denoted by α′(G). Let
the size of the smallest collection of vertices such that every edge is incident to at least
one vertex – i.e. the size of the smallest vertex cover of G – be denoted by β(G). Then
α′(G) = β(G).

Prove this result using max-flow min-cut!

5. Consider the following problem:

• You’re going on a hike, and you’re trying to decide what items to take with you!

• However, some of these items are only useful if they’re brought along with others.
For example, a can of soup is only useful if you bring along a bowl, a spoon, and
some means of heating the soup; your left shoe is kind of useless without a matching
right shoe, and so on/so forth.
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• As well, each of these items has an associated cost, in terms of their weight; for
example, you probably don’t want to bring a giant cooler jug of water with you, as
its cost probably overwhelms its benefit. How do you decide what items to bring
with you?

• To formalize this mathematically: suppose you have a set J = {j1, . . . jn} of items,
where each item ji ∈ J has a cost ci. Moreover, suppose we have a collection
S = {S1, . . . Sm} of subsets of J , where each subset Si has an associated benefit bi
that is triggered if and only if we take every element in Si.

What collection of items K ⊂ J will maximize our cost-benefit ratio (i.e.
∑

Si⊂K bi−∑
ji∈K ci ?)

Given any such sets J,S along with their cost/benefit pairings, create a network G on
which a minimal cut corresponds to a optimal choice of items.
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