
CCS Discrete III Professor: Padraic Bartlett

Homework 8: Flow Applications

Due Friday, Week 5 UCSB 2015

Do three of the following five problems! Have fun!

1. Many students, when they first come across the idea of the max-flow min-cut theorem,
actually implement the algorithm as follows:

i. We start with a network G with source s, sink t, and nonnegative rational-valued
capacity function c; we also start with a feasible flow f , that is initially 0 on every
edge.

ii. Take our network G, and attempt to find a path s = x0 → x1 → . . .→ xn = t such
that for every i, fxixi+1 < cxixi+1 .

iii. If such a path exists, increase f along this path to the minimum of the differences
cxixi+1 − fxixi+1 .

After doing this, if any edge is saturated — i.e. if fxixi+1 = cxixi+1 — mark it as
“finished,” and don’t use it in any future runs of our algorithm.

Return to (ii.)

iv. Otherwise, if no such path exists, we have created a maximal flow; halt.

(a) How does this algorithm differ from the one we presented in class?

(b) Give an example of a network and sequence of chosen paths where this algorithm
fails.

(c) Show that for any network, there is some way in which we can pick paths to run
the algorithm above on, so that it will generate a maximum flow!

2. In Connor’s presentation of the matrix-rounding problem, he assumed (as many text-
books do!) the following claim:

Theorem. Suppose that G is a network with a capacity function c, such that all of c’s
values are integers. Also suppose that there is some feasible flow f on G. Then there is
an integer-valued maximum flow with value equal to the capacity of the minimum cut.

We proved this claim for networks where the capacity function takes on nonnegative
integer values. However, we did not prove this claim for networks where the capacity
can take on negative values (i.e. where you can have “minimum” capacities on edges.)

Prove this here!

(A hint: By problem 1 on the previous HW, you know that there is some maximum flow
f ; you now just want to “round” this flow so that it is a maximum integer-valued flow.
Take G, and consider the subgraph H given by the collection of all edges in G where
cxy − fxy /∈ Z. Come up with a process to repeatedly “shrink” H until it is the empty
graph, without changing the overall value of our flow!)

1

https://books.google.com/books?id=1a6lSRbQ4YsC&pg=PA2011&lpg=PA2011&dq=round+a+matrix+rows+columns&source=bl&ots=ZPeTz4EDpX&sig=aP-bNZN-PujtaCC2KeP6wOLvsv0&hl=en&sa=X&ei=M0Q9VeOuB8jXsAXYh4HwBA&ved=0CC8Q6AEwAg#v=onepage&q=round%20a%20matrix%20rows%20columns&f=false
https://books.google.com/books?id=1a6lSRbQ4YsC&pg=PA2011&lpg=PA2011&dq=round+a+matrix+rows+columns&source=bl&ots=ZPeTz4EDpX&sig=aP-bNZN-PujtaCC2KeP6wOLvsv0&hl=en&sa=X&ei=M0Q9VeOuB8jXsAXYh4HwBA&ved=0CC8Q6AEwAg#v=onepage&q=round%20a%20matrix%20rows%20columns&f=false


3. Suppose that we want to make a tournament for a two-player game, where 2n people are
registered to play. We want to have every possible pair of people play each other in the
smallest number of rounds possible.

In class, we claimed that we could do this as follows:

• Let G be an abelian group of order 2n− 1, say Z/(2n− 1)Z.

• For each g ∈ G, let Mg = {{g,∞} ∪ {a, b} : a + b = 2g, a 6= b}.
• Identify our players with the set G ∪ {∞}, and each of our 2n− 1 rounds with the

2n− 1 distinct Mg’s.

Prove that this design yields a tournament, as claimed.

4. Prove or disprove: there is a tree T with the following properties:

• The k-th level of T contains k2 many vertices, for every k ∈ N.

• T has no “leaf” vertices: that is, every vertex in T has degree at least 2.

• A random walker starting at the root of T returns to the root with probability p,
for some value p < 1.

(This is the flip side of the “infinite-resistance” quadratic tree problem from last week.)

5. YER A WIZARD, HARRY!

(ahem) So, yes. You’re a wizard! In particular, you are a wizard that has been tasked
with writing a column on this year’s Quidditch World Cup race. As part of your research,
you are trying to determine which teams are still in the running to win their division.

For each group, you have the following information:

• Each of the team’s current win-loss records.

• The number of games each team has left versus the other teams in their group.

For example, the win-loss + games left records for the Oceanic Group could be the fol-
lowing:

Team Win-Loss Games Left NZ FIJ AUS SAM TON

New Zealand 60-22 36 6 6 4 2
Fiji 58-25 35 6 5 2 5

Australia 17-65 36 6 5 3 9
Samoa 40-41 37 4 2 3 8
Tonga 25-57 36 2 5 9 8

From looking at the table, it might seem possible for a team like Tonga to “run the
table” and still take first place if they won all of their games, if New Zealand and Fiji
were to lose out. However, this isn’t actually possible; Fiji and New Zealand have six
games against each other, which means that at least one of them will end up with 62
wins, and thereby place ahead of Tonga.

In general, you have the following information:

2



• A list of teams T1, . . . Tn, each with a number of wins w(Ti) and games remaining
g(Ti).

• For any two different teams, we have a number r(Ti, Tj) that tells us the number of
games those two teams still have against each other.

Consider the following network:

• For every pair of distinct teams {Ti, Tj} make a vertex vi,j .

• For every team Ti, make a team vertex ti. Connect each team vertex to each game
it appears in.

• Add a source vertex s and connect it to every game; add a sink vertex t and connect
it to every team.

For any team Ti, create a capacity function on this network so that team Ti can win
the division if and only if there is a flow that saturates every edge leaving s. (A flow
“saturates” an edge (x, y) if and only if fxy = cxy.)

3


