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1 Flows

The concept of currents on a graph is one that we’ve used heavily over the past few weeks.
Specifically, we took a concept from electrical engineering — the idea of viewing a graph
as a circuit, with voltage and current functions defined on all of our vertices and edges
— and used this concept to solve problems on random walks that (at first glance) looked
completely unrelated!

As always, in mathematics, when something looks useful, what should our first instinct
be? To generalize it! In specific, let’s consider the concept of current from our circuits.

On a given graph G, the current was a function i : V (G)× V (G)→ R such that

• ixy = −iyx; that is, the current flowing from x to y is just −1 times the current flowing
from y to x. This made intuitive sense; if we have 3 units of something flowing from
x to y, then if we were to look at things “backwards” we would have −3 units flowing
from y to x.

• ixy = 0 if {x, y} /∈ E(G). (Another way to phrase this restriction is to claim that i is a
function with domain E+(G), the set of all edges in our graph along with all possible
orientations on those edges, and to say that i is not defined on any pair {x, y} with
{x, y} /∈ E(G). Both ideas get to the same concept, which is that we don’t want to
work with current on edges that do not exist.)

• For any vertex x other than the source and ground vertices, we have Kirchoff’s law:∑
y∈N(x)

ixy = 0.

In other words, the “total current” flowing through x is 0. This makes sense; if we
think of current as something that is “preserved,” then we’re just saying that the total
amount of current flowing into x is the same amount that flows out — none gets left
behind, and none magically is created!

These ideas — that flow measured in one direction is just the negative of flow measured
in the other direction, and that at any other vertices other than two “special” ones labeled
source and sink, the total flow through that vertex should be zero — are ones that cap-
ture and describe phenomena far beyond that of currents! Consider the following real-life
instances of other sorts of “flows” that obey these rules:

1. Suppose that we have a house that we’re installing the plumbing for. If we view
our pipes as edges, and our joins between various pipes as vertices, we have a graph!
Moreover, if we turn the water on, we encounter behaviors identical to those above:
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• There is a special vertex, the source (the pipe connecting to the city water
hookup,) where water flows from; there is also a (literal!) sink vertex connecting
to the city sewage lines.

• On any pipe {x, y}, define wxy to be the total net amount of flow of water out
of x into y over a given unit of time. Then, if we measure the water wxy flowing
from its start point x to its end point y, we can immediately see that this is
just −wyx, the negative of the water flowing from y to x! That is, if we have
3cm3/min flowing out of x to y in one direction in our pipe, then clearly the
“net flow” from y to x is precisely −3cm3/min, as we have 3cm3/min flowing
into y, i.e. −3cm3/min flowing out of y!

• As well, if we measure any join(i.e. vertex) in our plumbing network, we expect
the total flow of water into that join to be the total flow of water out of that join
(otherwise, that pipe is leaking / somehow magically drawing water out of the
surrounding atmosphere / problematic, in either case!)

2. Conversely, suppose that we are modeling a highway system; we can think of our roads
as edges, and our interchanges/etc where roads meet up as vertices. Again, this looks
like a “flow:”

• There are special vertices: the on-ramps and off-ramps to our highways, where
cars can leave or exit.

• On any stretch of road from interchange x to interchange y, we can let rxy denote
the total net amount of traffic per unit of time leaving from x to y. Again, it is
reasonably clear that rxy = −ryx; if we have 30 net cars per minute leaving from
south to north on a stretch of road, then if we’re measuring from north to south
we have 30 cars per minute entering our south interchange. In other words, our
south interchange is gaining 30 cars per minute along the {x, y} road; so its net
flow from y to x is −30!

• As well, if we measure any interchange (i.e. vertex) in our road network, we
expect the total flow of cars into that interchange to be the total flow of cars
out of that join (otherwise, we have a massive pileup of cars there or a rogue
Honda manufacturing plant operating there, neither of which are things we want
as highway planners.)

1.1 Flows: Definitions and Examples

There are dozens of other examples of this phenomena; try to think of some! Accordingly,
this motivates us to make the following generalized definition for a flow:

Definition. A real-valued flow on a graph G with a pair of distinguished vertices s, t is
a map f : V (G)× V (G)→ R that satisfies the following three properties:

1. For any {v, w} /∈ E(G), we have f(v, w) = 0.

2. For any {v, w} ∈ E(G) we have f(v, w) = −f(w, v).
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3. For any vertex v 6= s, t, we satisfy Kirchoff’s law: namely, that∑
w∈N(v)

f(v, w) = 0.

We call such graphs G with distinguished vertices s, t networks. We will often denote
f(v, w) as fv,w for shorthand.

Given this idea of flow, there are a number of natural extensions we can make. For
example, we often want to study graphs where the edges are representing pipes with some
fixed capacity: in other words, if we think of our water example you might want to find
out what flows are feasible on a graph where all of the edges can carry at most one gallon
per minute (or in the traffic situation, no more than 100 cars per hour; or in the electricity
situation, where your wires are only rated to carry up to 1 ampere. This motivates the
following definitions:

Definition. A capacity function on a graph G is a function c : V (G) × V (G) → R+ ∪
{0,∞}, that assigns nonnegative capacity values to every edge.

In this definition, we ask that if {x, y} /∈ V (G) that cxy = 0 = cyx, as that edge does not
exist (and thus should have zero capacity.) Unlike with flows, we do not ask that cxy = cyx
or −cyx, as there is no inherent reason to assume we have such symmetry; for instance, we
could have a road with three lanes headed north and only one headed south (so it would
have asymmetric traffic capacities) or a pipe with a one-way gasket fitted to it (so water
could only travel in one direction; i.e. its capacity the other direction would be zero!)

Given a graph G and capacity function c, we say that a flow f on G is feasible if
fxy ≤ c(x, y), for every x, y ∈ V (G). Again, as with flows, we will often denote c(x, y) as
cxy for shorthand.

This motivates the following question: given a graph G with some given capacity func-
tion c, how “big” of a feasible flow can we define on G? In other words, if we’re thinking of
G as a collection of pipes with certain capacities, what’s the most water we can pump out
of the source vertex? If we think of G as a highway system, what is the maximum number
of cars we can handle entering our system at a time? If G is a circuit, what’s the biggest
battery we can install without burning out our wires?

At first, answering this question seems difficult. Consider the graph below, where we’ve
drawn in capacities on all of our edges:
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A graph with capacities labeled on its edges. Because our capacity function is “oriented,” we have doubled
all of the edges in our graph and labeled each with the “oriented” capacity for ease of visualization.

One quick observation that we can make is that no flow on this graph can pump any
more than ≤ 5 units of flow out of the source node; this is because the capacity of the only
edge leaving the source is 5.

We can actually improve on this observation: in fact, we can observe that the largest
any flow on this graph can be is 4! To see this, look at the two “green” edges below:
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These two edges form a “bottleneck” for our flow, as all paths from the source s to the
sink t must go through one of these two edges. However, the maximum capacity of these
two edges is 4; therefore, it would seem impossible for any flow to pump more than 4 units
out of the source!

We prove this claim, and in general set up the machinery to find upper bounds on the
maximum sizes of flows, in our next section:

1.2 The Concept of Cuts

Definition. For a connected graph G with a flow f , define the value of f , |f |, as the total

amount of current leaving the source node s : i.e.
∑

y∈N(s)

fsy.
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More generally, given a subset U of V (G), we say that the total flow through that
subset U is just the sum ∑

x∈U,y/∈U,
{x,y}∈E(G)

fxy.

We denote this quantity as f(U). In this notation, the value of f is just f (s); as well, we
can reformulate Kirchoff’s law as demanding that f(v) = 0 for every non-source/sink vertex
v.

Notice that if U is any subset of V (G) that does not contain either the source or the sink,
then the total flow through U is zero! We quickly prove this here:

Theorem. If G is a graph with distinguished source vertex s and sink vertex t, f is a flow
on G, and U is a subset of G’s vertices, then the total flow through U is zero.

Proof. Take any such graph G, and let U ⊂ V (G) be any subset of the vertices of G that
does not contain either the source vertex s or the sink vertex t.

Take any vertex x ∈ U . Break the set N(x) of x’s neighbors into two disjoint sets:

• Ax, the neighbors of x contained in U .

• Bx, the neighbors of x not contained in U .

Consider the sum ∑
x∈U

∑
y∈N(x)

fxy.

On one hand, by Kirchoff’s law, we know that the internal sum is 0 for every x ∈ U ; so this

entire sum is just
∑
x∈U

0 = 0.

On the other hand, look at what happens if we break the internal sum above into two
parts: Consider the sum

∑
x∈U

∑
y∈N(x)

fxy =
∑
x∈U

∑
y∈Au

fxy +
∑
y∈Bu

fxy

 =

∑
x∈U

∑
y∈Au

fxy

+

∑
x∈U

∑
y∈Bu

fxy

 .

The second double-sum at right, by definition, is just the sum of fxy over all edges where
x ∈ U, y /∈ U : in other words, this is just f(U).

The first double-sum at right, by definition, is the sum of fxy over all possible ways to
pick two vertices x, y ∈ U such that {x, y} is an edge. Notice that as a result, each edge
{x, y} is counted twice: once by fxy and another time by fyx.

However, we know that fxy = −fyx; so every edge connecting two elements in U con-
tributes 0 to this sum! In other words, the entire sum is just 0, as all of its terms cancel
out; so we actually have that

∑
x∈U

∑
y∈N(x)

fxy =

∑
x∈U

∑
y∈Bu

fxy

 = f(U).
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But we proved earlier that the left-hand side was zero; therefore we have proven that
f(U) = 0 as claimed.

There is a simple corollary to this result that is very valuable:

Definition. For a connected graph G, a cut is a collection of vertices S such that s ∈ S
and t /∈ S.

Corollary. If G is a graph with distinguished source vertex s / sink vertex t, S is a cut on
G, and f is a flow on G, then f(S) = f(s). That is, the flow through any cut is the flow
through the source vertex.

Proof. Take S, and write S = {s} ∪S′, where S′ is the set S \ {s}. By our result above, we
know that f(S′) = 0.

We claim that f(S) = f(s) + f(S′); combining this result with f(S′) = 0 will prove our
corollary. To see this, simply examine the sum∑

x∈S

∑
y∈N(x)

fxy.

As shown in our earlier proof, this object is just f(S), as all of the fxy’s corresponding to
“internal” edges in S (i.e. edges with both endpoints in S) get canceled out by fyx terms
that also show up in this sum.

However, by considering the two cases where either x = s or x 6= s, we can break this
sum up into the two sums  ∑

y∈N(s)

fsy

+

∑
x∈S′

∑
y∈N(x)

fxy

 .

The one at left is just f(s) by definition, and the one at right is just f(S′) by (again) our
earlier proof. So we have proven that f(S) = f(s) + f(S′) = f(s) + 0 = f(s), as claimed.

The reason we care about flow values and cuts is that they let us make our “bottleneck”
idea from before rigorous. Consider the following definition and corollary of our earlier
results:

Definition. The capacity of any cut S, c(S), is the sum∑
x∈S,y/∈S

cxy.

Corollary 1. Suppose that G is a graph with source vertex x and sink vertex t, a capacity
function c, and a feasible flow f (that is, a flow bounded above by this capacity function.)

Then f(s) ≤ c(S) for any cut S.
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Proof. We proved earlier that f(s) = f(S) for any cut S. As well, by definition we know
that

f(S) =
∑

x∈S,y/∈S

fxy ≤
∑

x∈S,y/∈S

cxy = c(S).

So we have proven our claim!

Surprisingly, the above simple bound — that the value of any flow is bounded above
by the capacity of any cut — turns out to be the best possible! We prove this in the next
section, via the (famous!) Ford-Fulkerson max-flow min-cut theorem!

1.3 The Max-Flow Min-Cut Theorem

Theorem 2. (Ford-Fulkerson:) Suppose that G is a graph with source and sink nodes s, t,
and a rational- and finite-valued capacity function c. Then the maximum value of any
feasible flow f on G is equal to the minimum value of any cut on G.

Proof. We prove our claim here via the Ford-Fulkerson algorithm, defined as follows:

1. Input: any currently feasible flow f . Let R be the set currently given by the single
source vertex {s}, and S be the subset of R currently defined as ∅.

2. Iteration: Pick any vertex x ∈ R that’s not in S. For every vertex y /∈ R connected
to x with fxy < cxy, add w to R. (We think of these as the edges in our graph that
“could have more flow on them.”)

Once you’ve done this search process over all of v’s neighbors, add x to the set S (the
“searched” set.) Repeat this step until R = S.

3. If the sink vertex t is not in R at this time, terminate.

4. Otherwise, the sink vertex is in R. Moreover, there is a path

P = (x0, {x0, x1}, x1, {x1, x2}, x2 . . . , {xn−1, xn}, t)

from x0 = s to xn = t, along edges where we have fxi,xi+1 < cxi,xi+1 for every i.

Call such a path an augmenting path for f , and let ε = min
0≤i≤n

(cxi,xi+1 − fxi,xi+1).

Now, (as the name suggests,) augment f along this path! That is, define a new flow
f ′ as follows:

• f ′xi,xi+1
= fxi,xi+1 + ε, for any edge {xi, xi+1} involved in our path P that we

traveled from xi to xi+1. (For consistency’s sake, also update the “backwards”
flow fxi+1,xi to −(fxi,xi+1 +ε), to preserve the antisymmetry property that makes
this a flow.)

• fyz = fyz, for any edge {y, z} not in our path.

• fyz = 0 for any y, z ∈ V (G) not connected by an edge.
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Notice that by definition, for any vertex xi in our path other than s, t, the net flow
through xi is still 0; we added ε to the flow entering xi along the edge {xi−1, xi}, and
canceled this out by adding ε to the flow leaving xi along the edge {xi, xi+1}. As well,
for any vertex y not in our path, we have changed nothing about the edges entering
or leaving that vertex; so the flow through y is unchanged and thus still 0. So f ′ is
indeed still a flow, as we still have our antisymmetry/Kirchoff’s law properties.

Also notice that by definition, fxi,xi+1 + ε ≤ fxi,xi+1 + (cxi,xi+1 − fxi,xi+1) = cxi,xi+1 ;
therefore our flow f ′ is still feasible!

Finally, note that f ′ has value ε-greater than our old flow, as we increased the flow
out of s by ε.

Go to (1) with our new flow f ′, and repeat this process.

We know that in each run of this process, ε is at least 1/a, where a is the least-common
denominator of the capacities of the edges. So each run of this process increases the size of
our flow by a fixed constant. As well, we know that our capacity function only has finite
values, and therefore that the capacity of the cut {s} is finite.

Therefore, because the value of any flow is bounded above by the size of any cut, and
we are increasing by a fixed constant at each step, our process above must terminate after
finitely many steps!

We can use this to prove the max-flow min-cut theorem as follows. Start by inputting
the feasible flow f0 that’s identically 0 on all edges. Our process will then return two things
for us: a flow f , and a set S generated on the last run of our process that caused the process
to terminate!

In other words, S is a set with the following two properties:

1. S contains s and not t, and thus is a cut.

2. S is specifically the collection of vertices v in V (G) for which there is a path P from
s to v, on which f(e) < c(e) for every edge in that path.

This means that for any pair x ∈ S, y /∈ S, we must have f(x, y) = c(x, y), as otherwise, we
would have added y to R and thus eventually to S!

But this means that

f(S) =
∑

x∈S,y/∈S

fxy =
∑

x∈S,y/∈S

cxy = c(S)!

In other words, we have proven that there is a cut S such that the value of our flow f is
equal to the capacity of our cut.

We know that the capacity of any cut is at least the value of any flow. Therefore,
in particular, this means that there is no smaller cut S′ (as if there was, we would have
c(S′) < c(S) = f(S) ⇒ c(S′) < f(S), a contradiction.) As well, we know that there can
be no greater flow than f , by the same logic! So, in fact, we know that S is the cut with
the smallest possible capacity on our graph, and that f is the flow with the largest possible
value on our graph.

In other words, we’ve proven our claim: that the capacity of the smallest cut is the value
of the largest flow.
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Two important things to recognize in the above theorem are the following:

1. If our capacity function c is finite and integer-valued, then the maximum flow we
create is integer-valued! This is not hard to see: if our capacity function is integer-
valued, then ε will be integer-valued, and thus every f ′ starting from the all-zeroes
flow on up will be integer-valued.

2. This theorem very, very strongly needed our capacities to be rational-valued, as oth-
erwise our algorithm would not terminate! In fact, you can create irrational capacity
functions for which the above algorithm will neither terminate nor even converge on
a flow that’s maximal (see the homework for an example!)

However, with that said, the theorem is still true. In other words, the following
result is how people usually refer to the max-flow min-cut theorem:

Theorem 3. (Ford-Fulkerson:) Suppose that G is a graph with source and sink nodes
s, t and a capacity function c. Then the maximum value of any feasible flow f on G
is equal to the minimum value of any cut on G.

Proving this stronger version of the theorem is a task for the homework!

2 Using Max-Flow Min-Cut to Prove Theorems

Given the nature of the max-flow min-cut theorem, it is perhaps not surprising that it
has a lot of practical applications and uses; electricity, water and traffic (amongst other
phenomena) are pretty practical objects to want to optimize! On the homework, and later
in these notes, we will look at some of these applications.

In this section, however, I want to focus on something fairly surprising; the max-flow
min-cut theorem is remarkably useful in proving other theorems in combinatorics! In this
section, we prove several famous theorems in mathematics with little to no effort using the
max-flow min-cut theorem.

2.1 Hall’s Marriage Theorem

We start by proving Hall’s Marriage Theorem, a result you may remember from winter
quarter’s homework sets:

Theorem 4. Suppose that G is a bipartite graph (V1, V2, E), with |V1| = |V2| = n for some
integer n. Then G has a perfect matching1 if and only if the following condition holds:

∀S ⊆ V1, |S| ≤ |N(S)|.

Proof. We first notice that the condition above is necessary for a perfect matching to exist;
indeed, if we had a subset S ⊆ V1 with |S| > |N(S)|, then there is no way to match up all

1In case you forgot: a perfect matching in a bipartite graph G is a collection of disjoint edges M that
contains all of the vertices in G. In a sense, it is a way to “match” all of the vertices in V1 to the vertices in
V2.
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of the |S| elements of S along edges with elements in V2 without using some elements more
than once.

We now prove that our condition is sufficient, via the max-flow min-cut theorem. Take
our graph G, and add in a source vertex s and sink vertex t. Connect s to every vertex of
V1 by adding in n edges, and similarly connect t to every vertex of V2 by adding in n more
edges.

Let c be a capacity function that’s defined as follows:

• cs,v1 = 1 for any v1 ∈ V1.

• cv2,t = 1 for any v2 ∈ V2.

• cv1,v2 =∞ for any v1 ∈ V1, v2 ∈ V2 such that {v1, v2} ∈ E(G).

• cv2,v1 = 0 for any v1 ∈ V1, v2 ∈ V2 such that {v1, v2} ∈ E(G). (In other words, we
disallow any flow from going from V2 back to V1.)

• cx,y = 0 for any {x, y} /∈ E(G).

By Ford-Fulkerson, there is a maximal flow f and minimal cut S on this graph, with
c(S) = f(s). We know that f is integer-valued, because c was integer valued.

Moreover, we know that f only adopts the values 0 or 1 on any edge! This is not hard to
see: take any v1 ∈ V1, and consider the net flow entering v1. It is at most 1: this is because
the capacity of the edge {s, v1} is at most 1, there are no edges from other V1-vertices to
v1 because our graph is bipartite, and the capacity of any edge from V2 to our v1 is zero
by construction. Therefore, because our flow is integer-valued, the net flow entering v1 is
either 0 or 1, and thus the net flow leaving v1 is either 0 or 1. Consequently, the flow along
any edge leaving v1 is either 0 or 1, as the sum of the flow along all leaving edges is either
0 or 1!

A similar argument proves (check it!) that the flow along any edges through v2 must
also be 0 or 1, and completes our proof of this claim.

Let M be the collection of all edges {v1, v2} on which fv1,v2 = 1. We can observe that
this is a matching: to see why, notice that because the net flow out of any vertex v1 ∈ V1
is 1, for any v1 ∈ V1, there is at most one {v1, v2} ∈ M with fv1,v2 = 1. Similarly, because
the net flow into any v2 ∈ V2 is 1, for any v2 ∈ V2, there is at most one {v1, v2} ∈ M with
fv1,v2 = 1. In other words, M is a matching!

We claim that M is a perfect matching; that is, that |M | = n, the size of |V1|. To do
this, note that |M | = f(s), as we have one edge in M for each edge with flow 1 in our flow!
We also know that f(s) = c(S), where S was our minimal cut.

Therefore, if we can prove that the capacity of any cut in our graph is at least n, then
we are done, as this will prove that |M | = f(s) = c(S) ≥ n!

Let X = S ∩ V1, and Y = S ∩ V2. We know that the capacity of any edge originally in
G is infinite; consequently, if x ∈ X has a neighbor y ∈ V2 such that y /∈ Y , the capacity of
this cut would be infinite!

But we know that there is a finite cut: in specific, the cut {s} has capacity n, as s is
connected to n other vertices by edges of capacity 1. Therefore, if S is a minimal cut, then
if x ∈ X has y ∈ N(x), we must have y ∈ Y . In other words, N(X) ⊆ Y , and thus no edge
in E(G) has v1 ∈ S, v2 /∈ S.
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But if we look at the only possibilities that are left, this means that if {u, v} is an edge
in E(G) with u ∈ S, v /∈ S, our edge must either be

• {s, v1}, for some v1 ∈ V1 \X, or

• {y, t}, for some y ∈ Y !

Therefore, if we look at c(S), we can see that

c(S) =
∑

v∈S,w/∈S,
{v,w}∈E(G)

cv,w

=
∑

v∈V1\X

c(s, v) +
∑
y∈Y )

c(y, t)

=
∑

v∈V1\X

1 +
∑
y∈Y )

1

= |V1 \X|+ |Y |
≤ (n− |X|) + |N(X)|
≤ n− |X|+ |X| = n.

So any cut has capacity at least n, and we’ve proven our claim!

2.2 Menger’s Theorem

We now continue with a classical theorem of Menger, for which we need the following
definition:

Definition. Let G be a graph. We say that a set K of edges separates two vertices s, t
if and only if there are no paths from s to t that do not use elements in K.

Theorem 5. Take any graph G on finitely many edges/vertices. For any two vertices
s, t ∈ V (G), the minimal size of any set K that separates s, t is equal to the maximal
number of edge-disjoint paths that start at s and end at t.

Proof. Take G. We first notice that the size of any separating set is at least as large as the
number of edge-disjoint paths starting at s and ending at t; this is because if K separates
s from t, it must contain at least one edge out of every edge-disjoint path (otherwise, we
could simply use that path to travel from s to t!)

As with the max-flow min-cut theorem2, to show that the maximum number of edge-
disjoint paths is equal to the minimal size of any separating set, it suffices to find a collection
P of paths and separating set K such that |P | = |K| to prove our claim, as any such P
must be maximal / K must be minimal.

2To repeat our logic from that proof; this is because if we could find any such sets P,K, then (because
we proved above that for any collection P ′ of paths / any separating set K, that |P ′| ≤ |K|) for any P ′,K′

we would have |P ′| ≤ |K| = |P | ≤ |K′|, and therefore that |P ′| ≤ |P |, |K| ≤ |K′| for any P ′,K′. That is, P
is maximal and K is minimal, as desired.
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Let s, t be the source and sink nodes of G, respectively, and let c be a capacity function
on G that has cx,y = 1 for every edge in E(G). By using the max-flow min-cut theorem,
find a integer-valued maximal flow f on G, and a corresponding minimal cut S.

I claim that f corresponds to f(s)-many edge-disjoint paths in our graph from s to t. To
see this, consider the following algorithm for finding a path from s to t given that f(s) ≥ 1:

1. Because f is integer-valued, f(s) ≥ 1, and the capacity of every edge in G is 1, there
is some edge leaving s to some vertex v1. Make this the first edge in our path.

2. Assume that we have gotten to the vertex vi in our process. If vi = t, then we are
done: we have created a path from s to t! Otherwise, vi 6= t, and therefore is a vertex
at which Kirchoff’s law holds. We got “to” vi via an edge {vi−1, vi} carrying a unit of
flow into vi; therefore, because our flow is integral and the capacity of every edge in
our graph is 1, there must be some edge leaving vi with a unit of flow! Let {vi, vi+1}
be this edge, and let us travel to vi+1.

3. Repeat step 2 until we halt (this is guaranteed to occur because G is finite;) this
generates the promised path from s to t along flow-edges!

If f(s) ≥ 1, this process certainly finds us one path from s to t. Given such a path, consider
the new flow f ′ formed by decreasing our flow to 0 along each edge in our path! This
remains a flow, because we still satisfy Kirchoff’s law at every non-source/sink vertex (as
we took 1 away from the flow entering and balanced this by taking 1 away from the flow
leaving as well.)

Therefore, we can run our algorithm again on this new flow to find another path! Notice
that this path cannot use any of the edges in our first path, as the flow along any edge used
in an earlier path is 0; so in fact these two paths are edge-disjoint. In fact, repeating this
process f(s) times will generate our desired f(s) edge-disjoint paths, as desired.

Now, I claim that our cut S corresponds to a separating set K of edges of size c(S).
Proving this claim will demonstrate that the number of edge-disjoint paths created above,
f(s), is equal to the size of our separating set c(S), and thus prove our claim.

To do this, define the set K as follows:

K =
{
{x, y} | x ∈ S, y /∈ S, {x, y} ∈ E(G)

}
.

On one hand, this is clearly a set of size c(S), as by definition c(S) =
∑

x∈S,y/∈S,
{x,y}∈E(G)

cxy for our

graph, and the capacity of each edge is 1.
On the other hand, S is a set that contains s and not t. Therefore, any path from

s to t will at some point in time need to have at least one edge of the form {x, y} with
x ∈ S, y /∈ S, which is by definition in our set above. Therefore, K is a separating set, as no
path can go from s to t without passing through an element of K! This finishes our proof,
as we have found a separating set with size equal to that of a collection of edge-disjoint
paths.
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2.3 Dilworth’s Theorem

We now turn to Dilworth’s theorem as a third example of how flows can solve combinatorial
theorems!

To state this theorem, we need a few definitions first:

Definition. Given a set P , a relation on P is any function from P × P → {T, F}. You
have seen many different kinds of relations before in this class, most notably equivalence
relations.

A partially ordered set P = (X,<) is a set X with a relation < on P that satisfies
the following two properties:

• Antisymmetry: For all x, y ∈ X, if x < y, we do not have y < x.

• Transitivity: For all x, y ∈ X, if x < y and y < z, then we have x < z.

Notice that we do not inherently know that any two elements are related: if we had the
third property that for any x 6= y in X¡ we have x < y or y < x, we would have something
called a total ordering.

For an example of a poset, consider the set P of all breakfast foods, with the relation
> defined by “is tastier than.” For instance, we definitely have

(delicious perfect pancakes) > (horribly burnt pancakes),

so these two objects are comparable. However, some other objects are not comparable:
i.e.

(delicious perfect pancakes) , (delicious perfect french toast)

are two different objects such that neither are really obviously “tastier” than the other.
Most things in life that we put orderings on are usually posets, as there are almost always
“edge cases” or other things that we can’t compare/think are as good as each other /etc.

Definition. In a poset P = 〈X,<〉, a chain is a set C ⊂ X such that any two elements of
C are comparable; that is, if x 6= y are both in C, then either x < y or y < x.

Similarly, an antichain is a set S ⊂ X such that no two elements in S are comparable;
that is, if x, y are both in C, then neither x < y or y < x can hold.

We state Dilworth’s theorem here:

Theorem 6. (Dilworth.) Take any partially ordered finite set P = 〈X,<〉. A decompo-
sition of P into m chains is any way to find m chains C1, . . . Cm such that the union of
those m chains is P itself.

Let m be the size of the smallest number of chains needed to decompose P . Then m is
the size of the largest antichain in P .

As before, we can easily observe that the size of any antichain is at most the size of any
decomposition; because no elements in an antichain are comparable, any two elements in
an antichain must belong to different chains. So, as always, it suffices to create an antichain
with size equal to a given decomposition of our poset into chains.
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Unlike our earlier theorems, this one does not seem to be quite as amenable to a flow-
based attack. In particular, our language of “maximal flows” seems to be good at giving
us edge-disjoint paths: however, in Dilworth’s theorem, we actually want vertex-disjoint
paths, because we’re trying to decompose P into chains (which are made out of vertices,
not the inequalities linking them.)

How can we do this? Well: what we really want to do is have a flow that, instead of
having some sort of maximum upper bound, has a minimal lower bound: i.e. that has to
send at least one unit of flow into every vertex! Our desire to do this motivates the following
two extensions of the max-flow min-cut theorem:

Theorem. Suppose that G is a directed graph with source and sink nodes s, t. Suppose
further that G comes with a capacity function c : V (G)× V (G)→ R ∪ {∞}.

Notice that c can adopt negative values here, which is different from before3. As before,
we say that a flow f is feasible given these two capacity functions if fxy ≤ cxy for any pair
x, y of vertices in V (G).

Suppose that there is any feasible flow f0 on our graph4 Then, from this feasible flow
f0, we can create another feasible flow f and cut S such that the following holds:

• For any x, y with one of x, y in S and the other not in S, we have fxy = cxy.

As before, this flow ’s value is equal to the capacity of our cut, and thus proves that there
is a maximal flow with value equal to that of the minimal cut.

Proof. HW!

To do “minimization” problems with this result, we can simply create a problem where
our capacity function takes on negative values: the “maximal” flow, then, is the flow that
attains the smallest negative values possible (and thus if we scale things by -1, is the flow
that attains the smallest positive values possible!) Then, if we set up a network where our
flow is forced to be negative, “maximizing” this flow will minimize the number of paths we
create, which in theory will give us the optimal number of paths!

We use these ideas here:

Proof. Let P = {X,<} be a partially ordered finite set. We turn P into a graph G, as
follows:

1. For each element x ∈ X, create a pair of vertices x1, x2 in our graph.

3One natural interpretation of a “negative” capacity is that this is a way to enforce a mandatory min-
imum flow! That is: suppose that we have any edge {x, y} such that cyx = −3. What does this mean?
Well: it means that the total flow from y to x must be at most −3; in other words, that the total flow from
x to y is at least 3! In particular, if we have any edge {x, y} that we want to enforce a minimum flow of l
and a maximum flow of u from x to y, we can set cxy = u, cyx = l.

Again, this is a natural thing to want to consider; in plumbing, for example, you often want to insure a
minimal amount of flow through your pipes to stop them from bursting when it drops below freezing in the
winter. (This motivation works less well at Santa Barbara than it does where I learned it in Chicago.)

4Unlike before, it is no longer obvious that every graph has a feasible flow: indeed, it is easy to create
a graph that has no feasible flow! Have a mandatory minimum flow from our source to some vertex v be
something huge, and then have the maximum flow out of v be tiny; this will immediately violate Kirchoff’s
laws!
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2. Create an edge {x1, x2} between each such pair of vertices.

3. Whenever x, y ∈ X are two elements of P such that x < y, add the edge {x2, y1} to
our graph.

4. Let A = {a ∈ X :6 ∃ y s.t. a < y}, and B = {b ∈ X :6 ∃ y s.t. y < b}. Create two
new vertices s, t, and add the edges {s, a2} and {b1, t} for all of the elements in A, B
respectively.

5. Define a capacity function c on G’s edges as follows:

• Set cx2,x1 = −1, cx1,x2 = ∞ for each element x of X. This in a sense mandates
that at least one unit of flow must pass from x1 to x2 for each such pair, and
that there is no upper limit on this flow in this direction.

• For any two elements x, y ∈ X with x < y, set cy1,x2 = 0, cx2,y1 = ∞. This
mandates that all of our flow must travel from x to y, and none flows “back-
wards” from y to x. Notice that this flow is going “backwards” from how we
might expect; we’re forcing our flow to go “upwards” to the source, instead of
the normal direction of “down” to the sink!

• As well, for any x ∈ B, set ct,x1 =∞, cx1,t = 0; this says, strangely enough, that
we only let things flow “out” of the sink.

• Finally, for any x ∈ A, set cx2,s =∞, cs,x2 = 0; this says (again, this is strange)
that we only let things flow “into” the sink.

We generate a starting feasible flow f0 on our network G as follows: initially, start with
an all-zero flow. Now, take any element x ∈ X, and construct a path from s to t through
the edge {x1, x2} as follows:

1. Let C be the largest chain in P that contains x. Let l be the smallest element in
C; we can see that l ∈ A, as otherwise there would be some element that is both
comparable to and smaller than l (in which case we could have added it to our chain,
contradicting our maximality.) As well, if u is the largest element in our chain, then
u ∈ B by similar reasoning.

2. Travel from t to s along this chain in order: i.e. if we write the elements of our chain
as (c1, c2 . . . cn) in order, take the path

t→ c11 → c12 → c21 → c22 → c21 → c32 → . . .→ cn1 → cn2 → s

Add −1 to our flow’s values along every edge in this path in the s → t direction, or 1
to every edge in this path in the t → s direction. Do this for every x ∈ X; the result of
this process is a feasible flow, as we have at least one negative unit of flow from x1 → x2
for any x ∈ X — that is, at least one unit of flow from x2 to x1 — and all of our flow is
going “backwards” from t to s, as our capacity functions desire.

Therefore, we can apply the modified max-flow min-cut theorem here to get a maximal
integer-valued flow f and minimal cut S with respect to our capacity function.

I claim that our maximal flow corresponds to f(s)-many chains in our poset (not nec-
essarily disjoint.) To see this, simply reverse-engineer the algorithm used to turn chains to
paths above. That is, given a maximal flow f with f(s) ≤ −1, do the following:
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• Start from t. There must be at least one unit of flow from t to some x1 with x ∈ A;
travel to this x1. By Kirchoff, this unit of flow must travel to x2; go there.

• From x2, our one unit of flow must leave somewhere else; in specific, it must go either
to s or to some y1 with x < y, as these are the only edges we have created that have
positive capacity. Travel to that y1, and then to y2.

• Repeat this step until we get to s.

This generates a path from t to s along edges where the flow is at least 1. This path
corresponds to a chain in our poset, by starting with the first element in A we began at
and ending at the last element in B before we went to t.

If we increase our flow by 1 on each of these edges, we get a new flow with value f(s)+1,
and have created a single chain. Do this |f(s)| times, to get |f(s)| chains, and a flow whose
value is 0; i.e. a flow whose value on every edge is 0, as no cycles can exist on our graph
because of our capacity function constraints!

This means that our f(s) paths must have gone through each {x1, x2} edge in our graph;
in other words, that our f(s) chains contain any x ∈ X, and therefore that we can write P
as the union of f(s)-many chains.

We now turn our attention to our minimal cut. We first note that a finite cut exists:
consider the set S = {s} ∪ {x2 | x ∈ A}. The only edges that have one endpoint in S and
another not in S are those of the form {x1, x2} for x ∈ A; therefore, this has capacity −|A|,
which is finite as P itself is finite.

Therefore, if S is any minimal cut, we know that the following must hold:

• For any x ∈ X, if x1 ∈ S, then x2 is also in S, as the capacity cx1,x2 =∞.

• Similarly, if x, y are a pair of elements of X with x < y, and x2 ∈ S, then y1 is also in
S, as the capacity cx2,y1 is infinite.

• Suppose that x1 ∈ S and x ∈ X is the element corresponding to x1. Suppose that
there is no y2 ∈ S with corresponding y ∈ X such that y < x. Then deleting x1 from
our cut decreases the capacity of our cut, as we have replaced the sum

∑
y2∈G cx1,y2 = 0

with cx2,x1 = −1. So all minimal cuts have this property!

• Using similar logic, suppose that x2 ∈ A and x2 /∈ S. Then adding x2 to our cut
strictly decreases its capacity, as (because x1 /∈ S in such a situation by our first
bullet point) we’d replace cs,x2 = 0 with cx2,x1 = −1. So any minimal cut must
contain each x2 ∈ A.

In particular, this implies the following observation:

Observation. Suppose that S is a minimal cut on our graph. Then the only “crossing”
edges for S — that is, the only edges {u, v} such that u ∈ S, v /∈ S holds — are those of
the form {x1, x2}, for some x ∈ X. Moreover, if {x1, x2} and {y1, y2} are a pair of crossing
edges corresponding to a pair of elements x, y ∈ X, then we cannot have x < y or y < x.

In other words, the collection of cut-edges of our minimal cut corresponds to an antichain
in P !
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Moreover, any antichain corresponds to a cut: take all of the x2’s corresponding to
elements in that antichain, and everything above them in the poset. This is a cut, with
value equal to −1 times the number of elements in our antichain. Therefore, a minimal cut
corresponds to the largest possible antichain, as the values of all of these cuts are negative!

This finishes our proof: we have shown that for any poset P , the size of the largest
antichain is the size of the smallest decomposition of P into chains. Success!

2.4 Baranyai’s Theorem on Tournaments

We close here by studying a famous result of Baranyai on tournaments! To understand this
result, start with the following question:

Question 7. Suppose that we’ve decided to create a Rock-Scissors5 tournament for eight
people. Specifically, in each round, we want to divide people up into pairs and have each
pair play each other. How many rounds do we need in order to have each player face each
other player exactly once?

Solution. Trivially, we will need at least seven rounds; this is because each team is playing
exactly one other team in each round and there are eight total teams.

As it turns out, this bound is achievable! To see why, consider the following picture:

1

2

3

45

6

7

8

This is a schedule for the first round; to acquire schedules for later rounds, simply take this
picture and rotate it by appropriate multiples of 2π/7.

This observation can in fact be generalized: if we want to create a tournament for 2n teams
that requires 2n−1 rounds for everyone to play each other, we can do this with the following:

• Let G be an abelian group of order 2n− 1, say Z/(2n− 1)Z.

• For each g ∈ G, let Mg = {{g,∞} ∪ {a, b} : a+ b = 2g, a 6= b}.
5Rock-Scissors is like Rock-Paper-Scissors, but without paper.
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• Identify our teams with the set G ∪ {∞}, and each of our 2n − 1 rounds with the
2n− 1 distinct Mg’s.

The picture above can be thought of as the above process ran on G = Z/7Z, where the ∞
vertex is the 8 vertex. (If you are unpersuaded, try tilting your head by 90◦.)

I claim this yields the desired tournament (and leave the proof for the homework!)
This is all well and good for 2-player games. But what if we want to consider multi-player

games, like (say) Super Smash Bros. Melee? Or n-player chess6?
In other words: suppose we have a game that requires k teams to play, and we want

to make a tournament with n teams. How many rounds do we need to insure that every
possible combination of players encounter each other?

For the moment, let’s assume that k divides n for convenience’s sake. In the best case,
then, we’ll need to have

(
n
k

)
· kn =

(
n−1
k−1
)

many rounds; we have
(
n
k

)
many possible k-subsets

of our players that we want to have encounter each other, and can fit n/k many such subsets
into each round.

Can we achieve this “optimal” efficiency for every such k, n where k|n? Or is it possible
that some tournaments will need to be less efficient than this? We asked this question above
for k = 2, and (if you do the homework problem mentioned above) saw that the answer is
yes!

For k = 3, 4, however, this problem is far harder; moreover, for any value of k ≥ 5
there are no constructive7 proofs known like the above. Consequently, the following result
of Baranyai was really surprising when it first came out — with far less effort than any
case other than k = 1, 2, we can settle all of these problems at once!

Theorem. If k divides n, then the set of all k-element subsets of the set {1, . . . n} can be
divided into

(
n−1
k−1
)

many disjoint k-parallel classes.8

Proof. Let n, k be given, let m = n/k, and M =
(
n−1
k−1
)
. We will prove a stronger version

of our claim: for any integer 1 ≤ l ≤ n, there is a collection A1, . . . AM of m-partitions9

of {1, . . . l}, with the property that each subset S ⊆ {1, . . . l} occurs
(

n−l
k−|S|

)
many times in

these partitions Ai.
At first glance, this . . . does not look like a stronger version of our claim. It may not

look like our claim at all, in fact! To see why this actually is our claim, think about what
happens when we let n = l. If our claim holds for this value of l, we will have made a

6n-player chess is played like normal chess, except with n players arranged in a cycle, alternating play on
the white and black sides. It is recommended to play with an odd number of players, for maximal complexity.

7A proof is called constructive when the proof’s methods actually construct an instance of the object they
claim exists; for instance, in our argument that 2-player games can have efficient tournaments, we proved
this by creating efficient tournaments. Not all proofs are constructive: think of our probabilistic proofs from
the winter, where we showed that certain things must exist without actually explaining how you would make
them!

8A k-parallel class A is a collection of subsets {S1, . . . Sn/k} of subsets of {1, . . . n}, all size k, that
partition the set {1, . . . n}: in other words, every element of {1, . . . n} is in exactly one subset Si. Two such
parallel classes are called disjoint if they do not contain any of the same k-element subsets. We will usually
just say “parallel class” instead of k-parallel class if the value of k is understood.

9A m-partition of a set X is a collection A of m pairwise disjoint subsets of X, some of which can be
empty, so that their union is X.
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collection of M different m-partitions of {1, . . . n} with the following property: each subset
S of {1 . . . n} shows up in

(
0

k−|S|
)
-many collections. In other words, the only subsets that

show up are those with |S| = k (because that’s the only value for which
(

0
k−|S|

)
6= 0,)

and those all show up precisely once. In other words, we will have created a collection of
M =

(
n−1
k−1
)

many partitions of {1, . . . n}, each of which is made out of different k-element

subsets. In other words, we have
(
n−1
k−1
)

disjoint parallel classes, as desired!
We prove this claim by induction on l. Notice that for l = 1, our claim is very easy to

prove: we are asking for a collection A1, . . . AM of m-partitions of {1} with the property
that each subset S of {1} shows up in

(
n−1
k−|S|

)
of these partitions.

In this case, we can notice that we actually know what all of these objects must be:

1. If A is any m-partition of {1}, then A consists of one copy of the set {1} and m − 1
copies of the set ∅; this is the only way to break {1} into m disjoint subsets!

2. If we do this, then the empty set shows up in all M =
(
n−1
k−1
)

of these partitions,

occurring m−1 = n
k−1 = n−k

k times in each partition. This gives us n−k
k ·

(n−1)!
(k−1)!(n−k)! =

(n−1)!
k!(n−k−1)! =

(
n−1
k

)
many occurrences of the empty set, which is

(
n−1
k−|∅|

)
as claimed.

3. Similarly, the number of times the set {1} shows up is once in each m-partition. There
are M =

(
n−1
k−1
)

=
(

n−1
k−|{1}|

)
such partitions, which tells us that this set also shows up

the claimed number of times.

4. There are no other subsets of {1}, so we’ve verified our claim for all possible subsets
and thus checked our base case!

We now proceed to the inductive step. Assume that we’ve demonstrated our claim
for some value of l < n, and that we have the desired {A1, . . . AM} set of m-partitions
of {1, . . . l}. We will prove our claim for l + 1 using the max-flow min-cut theorem, by
considering the following network:

• Let s, t be source and sink vertices. For each of our m-partitions Ai create a vertex
Ai, and for each subset S ⊂ {1, . . . l} create a vertex S.

• For every i, create an edge {s,Ai} from the source to the Ai vertex. Similarly, for
every subset S, create an edge {S, t} from the S-vertex to the sink. As well, add in
the edge {Ai, S} whenever S ∈ Ai.

• Define a capacity function on this graph by setting c(s,Ai) = 1, c(Ai, s) = 0, c(Ai, S) =
∞, c(S,Ai) = 0, c(S, t) =

(
n−l−1
k−|S|−1

)
, and c(t, S) = 0.

Consider the following flow f :

• f(s,Ai) = 1, for all Ai.

• f(Ai, S) = k−|S|
n−l , and

• f(S, t) =
(

n−l−1
k−|S|−1

)
.

19



I claim this is actually a flow. To see this, note that the sum of the flows leaving Ai is∑
S∈Ai

k − |S|
n− l

=
1

n− l
·
∑
S∈Ai

(k − |S|)

=
1

n− l
·

mk − ∑
S∈Ai

|S|


=

1

n− l
· (mk − l)

=
1

n− l
· (n− l)

= 1,

which is precisely the flow entering Ai.
As well, the sum of values entering a vertex S is∑

i:S∈Ai

k − |S|
n− l

=
k − |S|
n− l

·
(
n− l
k − |S|

)
=

(
n− l − 1

k − |S| − 1

)
,

which is precisely the flow leaving S.
So this is a flow! Furthermore, it’s a maximal flow with value M , because it saturates

all of the edges leaving s.
We. . . don’t actually care about this flow. The only thing we care about is that we have

proven that there is a flow with value M . So, in particular, we know that any maximal
flow has value M , and in particular is maxed out on all of the {s,Ai} and {S, t} edges.
Therefore, if we use the max-flow min-cut theorem to get a maximal flow, because all of the
capacity values are integral, we’ll get a flow where all of the values are integers that stays
maxed out on these {s,Ai}, {S, t} edges. This is the flow we want!

Let f ′ be such an integral flow. Because f is 1 on all of the {s,Ai} edges, it is one on
exactly one {Ai, S} edge and 0 on all of the others. We can think of this as matching each
Ai to exactly one S subset. For each S, furthermore, we know that this S is picked out by(

n−l−1
k−|S|−1

)
-many different Ai’s, because this is the flow leaving each S.

Finally, turn this collection of {A1, . . . AM}’s into a collection {A′1, . . . A′M}, by taking
Ai and replacing its assigned subset Si with Si ∪ {l + 1}.

How many times does each subset S ⊆ {1, 2, . . . l + 1} show up in our new collection
{A′1, . . . A′n}? First, consider any subset of the form S = S′ ∪ {l + 1}, where S′ ⊂ {1, . . . l}.
By construction, we know that this set shows up in each A′i-partition that had S as its
assigned chosen subset, and in no other places (as there was no other way to get the l + 1

term.) There were precisely
(

n−l−1
k−|S|−1

)
=
( n−(l+1)
k−(|S|+1)

)
-many such subsets; so our claim holds

for all of these kinds of sets!
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Now, examine the subsets that don’t contain l + 1: i.e. S ⊂ {1, . . . l}. There were
originally

(
n−l
k−|S|

)
-many of these subsets, and we took away

(
n−l−1
k−|S|−1

)
of these to form new

l + 1 subsets; this leaves(
n− l
k − |S|

)
−
(
n− l − 1

k − |S| − 1

)
=

n− l
k − |S|

·
(
n− l − 1

k − |S| − 1

)
−
(
n− l − 1

k − |S| − 1

)
=
n− l − k + |S|

k − |S|
·
(
n− l − 1

k − |S| − 1

)
=

(
n− l − 1

k − |S|

)
,

which is again what we claimed. So we have proven our result by induction: setting l = n
then gives us our desired collection of disjoint parallel classes.

Tournaments! Surprisingly hard.

3 Algebraic Flows

We finish up our notes by inverting the way we’ve been using flows so far; instead of
using flows to study other problems in combinatorics, why not study flows themselves via
combinatorial methods? We do this via the following slight “generalization” of flows to
abelian groups:

4 Definitions and Fundamental Results

Definition. Let A be an abelian group. An A-circulation on a graph G is any function
f : V (G)× V (G)→ A with the following properties:

1. For any x, y ∈ V (G) with {x, y} /∈ E(G), we have fxy = 0.

2. For any x, y ∈ V (G) we have fxy = −fyx.

3. For any vertex x ∈ V (G), we satisfy Kirchoff’s law at x: that is,∑
y∈N(x)

fx,y = 0.

This is kind-of like a flow from before, except that we don’t have a capacity function, nor
do we have special source/sink vertices; we instead require our graph to satisfy Kirchoff’s
law everywhere!

Definition. Let A be an abelian group. An A-flow on a graph G is an A-circulation where
fxy 6= 0 for any edge {x, y} in E(G).
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An A-flow is simply a circulation where we make sure that our flow along every edge is
nonzero; in other words, the flow doesn’t “pretend” some of our edges are not there.

Very surprisingly, the
We state a few surprising results here, the first of which was on your HW yesterday:

Theorem 8. For any graph G, there is a polynomial P such that the number of distinct
A-flows on G is given by P (n− 1), where |A| = n.

Proof. (Sketch:) Work by induction on |E|. Take any edge e0 in your graph, and consider
the two graphs G \ {e0}, where you just delete the edge, and G/{e0}, where you shrink the
edge to a point. To each of these graphs, apply our inductive hypothesis, to get a pair of
polynomials P2(x) and P1(x); finally, use a counting argument on the A-flows of G to show
that P2(n)− P1(n) is the number of distinct A-flows on G.

The main reason we mention the above result is that it, in some sense, says that our
choice of group for a A-flow doesn’t really matter! – the only important thing is how many
elements it has in it. To formally state this as a corollary:

Corollary 9. If A, B are a pair of groups with |A| = |B|, and G is a graph, then there is
an A-flow on G if and only if there is a B-flow on G.

In a sense, we have reduced our study of A-flows to the study of Z/kZ-flows, which
should make our life remarkably easier. One thing we might wonder, now, is whether
we can turn these Z/kZ-flows into actual Z-flows: i.e. whether by being clever, we can
transform the weaker requirement of∑

w∈N+(v)

g(v, w)−
∑

w∈N−(v)

g(w, v) ≡ 0 mod k

into the stronger requirement∑
w∈N+(v)

g(v, w)−
∑

w∈N−(v)

g(w, v) = 0.

As it turns out, we can!

Definition. A k-flow f on a graph G is a mapping f : E(G)→ Z, such that 0 < |f(e)| < k
and f satisfies Kirchoff’s laws at every vertex.

Theorem 10. A graph G has a k-flow iff it has a Z/kZ-flow.

Proof. (Sketch:) Any k-flow on G satisfies the relation∑
w∈N+(v)

g(v, w)−
∑

w∈N−(v)

g(w, v) = 0.

at every vertex v. Therefore, this flow trivially induces a Z/kZ-flow by interpreting all of
its values as elements of Z/kZ (because if a sum of things is equal to 0, it’s certainly equal
to 0 mod k.)
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To go the other way: take any flow f : E(G) → Z/kZ. Interpret f as a function
E(G)→ {1, . . . k − 1}. Then all we have to do is for every edge e, decide whether we map
it to f(e) or f(e)− k, in a sufficiently consistent way that we insure Kirchoff’s laws are still
obeyed.

It turns out that if you pick an interpretation that minimizes the Kirchoff-sums∣∣∣∑w∈N+(v) g(v, w)−
∑

w∈N−(v) g(w, v)
∣∣∣ at every vertex, it actually does this! (You can show

this by contradiction; it’s not terribly surprising, and is mostly sum-chasing.

5 Some Calculations

To recap: we’ve proven that for an abelian group A with |A| = k, a graph G has an A flow
iff it has a Z/kZ-flow iff it has a k-flow. Therefore, in a sense, the only interesting questions
to be asked here is the following: given a graph G, for what values of k does G have a
k-flow?

We classify some cases here:

Proposition 11. A graph G has a 1-flow iff it has no edges.

Proof. This is trivial, as a 1-flow consists of a mapping of G’s edges to 0, such that no edge
is mapped to, um, 0.

Proposition 12. A graph G has a 2-flow iff the degree of all of its vertices are even.

Proof. A 2-flow consists of a mapping of G’s edges to {±1}, or equivalently a mapping of
G’s edges to 1 in Z/2Z, in a way that satisfies Kirchoff’s law. However, we trivially satisfy
Kirchoff’s laws in the Z/2Z case iff the degree of every vertex is even; so we know that this
condition is equivalent to having a 2-flow.

Definition. For later reference, call any graph where the degrees of all of its vertices are
even a even graph; relatedly, call any graph where the degree of any of its vertices is 3 a
cubic graph.

Proposition 13. A cubic graph G has a 3-flow iff it is bipartite.

Proof. A 3-flow consists of a mapping of G’s edges to {1, 2} in Z/3Z, in a way that satisfies
Kirchoff’s law. Suppose that we have some such flow on our graph: call it f .

Take any cycle (v1, v2, , vn) in this graph, and consider any two consecutive edges
(v1, v2), (v2, v3). Suppose f assigned these the same value, and let w be v2’s third distinct
neighbor: then, by Kirchoff’s law, we know that

− f(v1, v2) + f(v2, v3) + f(v2, w) = 0⇒ f(v2, w) = 0.

But f is a Z/3Z-flow: so this cannot happen! Therefore, the values 1 and 2 have to occur
alternately on this cycle, and therefore it must have even length. Having all of your cycles
be of even length is an equivalent condition to being bipartite, so we know that our graph
must be bipartite.
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To see the other direction: suppose that G is bipartite, with bipartition V1, V2. Define
f(x, y) = 1 and f(y, x) = −1 = 2, for all x ∈ V1, y ∈ V2; this evaluation means that for any
x ∈ V1, we have

f(x, y1) + f(x, y2) + f(x, y3) = 1 + 1 + 1 ≡ 0 mod 3

and for any y ∈ V2, we have

f(y, x1) + f(y, x2) + f(y, x3) = 2 + 2 + 2 ≡ 0 mod 3

by summing over their three neighbors in the other part of the partition. So this is a 3-flow,
and we’ve proven the other direction of our claim.

For simplicity’s sake, we introduce the function ϕ(G) to denote the smallest value of k
for which G admits a k-flow: if no such value exists, we say that ϕ(G) =∞.

We now list here a series of claims whose proofs we leave for the HW:

Proposition 14. ϕ(K2) =∞.

Proposition 15. More generally, a connected graph G has ϕ(G) = ∞ whenever G has a
bridge: i.e. there is an edge e ∈ E(G) such that removing e from G disconnects G.

Proposition 16. ϕ(K4) = 4.

Proposition 17. If n is even and not equal to 2 or 4, then ϕ(Kn) = 4.

Proposition 18. A graph G has a 4-flow if and only if we can write it as the union of
two even graphs: i.e. there are a pair of graphs G1, G2, with possibly overlapping edge and
vertex sets, such that V (G) = V (G1) ∪ V (G2), E(G) = E(G1) ∪ E(G2).

Proposition 19. A cubic graph G has a 4-flow if and only if it is three-edge colorable.

Corollary 20. The Petersen graph has no 4-flow.

On the HW, you (hopefully) showed that the Petersen graph does have a 5-flow earlier
in the week; therefore, we know that ϕ(Pete) = 5.

6 Open Conjectures

Surprisingly, when you start computing more of these numbers, it seems pretty much im-
possible to find anything that’s got a value of ϕ bigger than 5 and not yet infinity. This
motivated Tutte to make the following conjectures on k-flows, which are still open to this
day!

Conjecture 21. Every bridgeless graph has a 5-flow.

More surprisingly, it seems like the Petersen graph, in a sense, is unique amongst graphs
that have 5-flows:

Conjecture 22. Every bridgeless graph that doesn’t contain the Petersen graph as a minor
has a 4-flow.
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Currently, the best known result is a theorem of Seymour, from 1981, that proves that
every bridgeless multigraph has a 6-flow: due to the lack of time, we omit this proof here.
(Interested students should come and talk to me if they want to see it!) Still, the gap
between 6 and 5 is wide-open, as is the improvement to 4 in the case of graphs that don’t
contain the Petersen graph as a minor.
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