
CCS Discrete III Professor: Padraic Bartlett

Lecture 3: Algebra and Graphs

Weeks 5-6 UCSB 2015

We turn here to a different aspect of graph theory; the intersection of graphs and
algebra! We start by something that’s a fairly natural transition from our work with flows
over the past few weeks: the concept of an algebraic flow!

1 Algebraic Flows

1.1 Definitions and Fundamental Results

Definition. Let A be an abelian group. An A-circulation on a graph G is any function
f : V (G)× V (G)→ A with the following properties:

1. For any x, y ∈ V (G) with {x, y} /∈ E(G), we have fxy = 0.

2. For any x, y ∈ V (G) we have fxy = −fyx.

3. For any vertex x ∈ V (G), we satisfy Kirchoff’s law at x: that is,∑
y∈N(x)

fx,y = 0.

This is kind-of like a flow from before, except that we don’t have a capacity function, nor
do we have special source/sink vertices; we instead require our graph to satisfy Kirchoff’s
law everywhere!

Definition. Let A be an abelian group. An A-flow on a graph G is an A-circulation where
fxy 6= 0 for any edge {x, y} in E(G).

An A-flow is simply a circulation where we make sure that our flow along every edge is
nonzero; in other words, the flow doesn’t “pretend” some of our edges are not there.

A natural question to ask here is the following: for a given group A, when does a graph
G admit an A-flow? For example, the graph K4 admits a Z/4Z flow, as drawn below:

3

2

1
2

3

1

1

(As before, to define a flow on a graph, we place orientations on our edges and label our
edges with the flow along that edge in that orientation.)

However, you can easily check (do this on pen and paper!) that G does not admit a
Z/3Z flow; given any way to label our edges with 1’s and 2’s, it’s impossible to actually
label everything consistently in a way that satisfies Kirchoff’s law.

Surprisingly, it turns out that A itself doesn’t really matter here! In particular, the only
aspect of A that matters is the size of A, as we state in the following theorem:

Theorem. Take any two abelian groups A,B, with |A| = |B|. Then a graph G admits an
A-flow if and only if it admits a B-flow.

We prove this with the following stronger result:

Theorem 1. For any graph G, there is a polynomial P such that for any abelian group
A, the number of distinct A-flows on G is given by P (|A|). As a consequence, the only
thing that matters for determining whether or not a graph admits a A-flow is the size of the
abelian group A.

Proof. We actually prove this claim for all multigraphs, instead of just graphs — that is,
we let our graph G also have loops and multiple edges. We prove our claim by induction
on the number of non-loop edges in G. (A question you might have, in this setting, is how
loops interact with flows. Intuitively, we would think that any flow leaving a vertex on a
loop edge must also return to that vertex on a loop edge: accordingly, we can really put
any value on a loop edge without changing whether or not we satisfy Kirchoff’s laws!)

Our base case is when our graph only has loops. In any such graph, as discussed above,
we can put any non-zero value on each loop edge and still satisfy Kirchoff’s laws. There are
|A| − 1 many such values; so if there are m loops, then there are (|A| − 1)m many A-flows
on this graph, which is clearly a polynomial in |A|.

For induction: suppose that our graph has an edge e0 = {x, y} between two distinct
vertices. Consider the two graphs G \ {e0}, where you just delete the edge, and G/{e0},
where you contract the edge e0. (If you’ve forgotten how edge contraction works, check out
our notes on the four-color theorem where we introduced this definition!)

To each of these graphs, apply our inductive hypothesis, to get a polynomial P1(x) for
the graph G/{e0} and another polynomial P2(x) for the graph G \ {e0}. Now, make the
following observations:

• There is a 1-1 correspondence between A-flows on G \ {e0} and A-circulations on G
where fxy = 0 and fvw 6= 0 for any other edge {v, w}; to see this, take any such
A-circulation on G and simply copy it over onto G\{e0}! It’s still a circulation, as we
haven’t changed any of our values on our non- {x, y} edges and therefore still satisfy
Kirchoff’s laws; it’s also now a flow, as we deleted the only edge with a zero flow on
it!

• Similarly, there is a 1-1 correspondence between A-flows on G/{e0} and A-circulations
on G where fvw 6= 0 for any edge {v, w} 6= {x, y}, and fxy could be anything; either
0 or nonzero. (You are asked to prove this on the HW!)

2

http://math.ucsb.edu/~padraic/ucsb_2014_15/ccs_discrete_w2015/ccs_discrete_w2015_lecture4.pdf

By definition, we know that the number of A -flows on G is just the number of A-circulations
where fvw 6= 0 for any edge {v, w} 6= {x, y}, and fxy 6= 0 as well; in other words, it’s just
P1(|A|)− P2(|A|). So such a polynomial exists for G as well, and we’ve proven our claim!

In a sense, we have reduced our study of A-flows to the study of Z/kZ-flows, which
should make our life remarkably easier. One thing we might wonder, now, is whether
we can turn these Z/kZ-flows into actual Z-flows: i.e. whether by being clever, we can
transform the weaker requirement of∑

y∈N(x)

fxy ≡ 0 mod k

into the stronger requirement ∑
y∈N(x)

fxy = 0 mod k.

As it turns out, we can!

Definition. A k-flow f on a graph G is a Z-flow such that |fxy| < k for every edge {x, y}.

Theorem 2. A graph G has a k-flow iff it has a Z/kZ-flow.

Proof. (Sketch:) Any k-flow on G satisfies the relation∑
w∈N+(v)

g(v, w)−
∑

w∈N−(v)

g(w, v) = 0.

at every vertex v. Therefore, this flow trivially induces a Z/kZ-flow by interpreting all of
its values as elements of Z/kZ (because if a sum of things is equal to 0, it’s certainly equal
to 0 mod k.)

To go the other way: take any flow f : E(G) → Z/kZ. Interpret f as a function
E(G)→ {1, . . . k − 1}. Then all we have to do is for every edge e, decide whether we map
it to f(e) or f(e)− k, in a sufficiently consistent way that we insure Kirchoff’s laws are still
obeyed. Doing this is an exercise for the homework!

1.2 Some Calculations

To recap: we’ve proven that for an abelian group A with |A| = k, a graph G has an A flow
iff it has a Z/kZ-flow iff it has a k-flow. Therefore, in a sense, the only interesting questions
to be asked here is the following: given a graph G, for what values of k does G have a
k-flow?

We classify some cases here:

Proposition 3. A graph G has a 1-flow iff it has no edges.

Proof. This is trivial, as a 1-flow consists of a mapping of G’s edges to 0, such that no edge
is mapped to, um, 0.

3

Proposition 4. A graph G has a 2-flow iff the degree of all of its vertices are even.

Proof. A 2-flow consists of a mapping of G’s edges to {±1}, or equivalently a mapping of
G’s edges to 1 in Z/2Z, in a way that satisfies Kirchoff’s law. However, we trivially satisfy
Kirchoff’s laws in the Z/2Z case iff the degree of every vertex is even; so we know that this
condition is equivalent to having a 2-flow.

Definition. For later reference, call any graph where the degrees of all of its vertices are
even a even graph; relatedly, call any graph where the degree of any of its vertices is 3 a
cubic graph.

Proposition 5. A cubic graph G has a 3-flow iff it is bipartite.

Proof. A 3-flow consists of a mapping of G’s edges to {1, 2} in Z/3Z, in a way that satisfies
Kirchoff’s law. Suppose that we have some such flow on our graph: call it f .

Take any cycle (v1, v2, , vn) in this graph, and consider any two consecutive edges
(v1, v2), (v2, v3). Suppose f assigned these the same value, and let w be v2’s third distinct
neighbor: then, by Kirchoff’s law, we know that

− fv1,v2 + fv2,v3 + fv2,w = 0⇒ fv2,w = 0.

But f is a Z/3Z-flow: so this cannot happen! Therefore, the values 1 and 2 have to occur
alternately on this cycle, and therefore it must have even length. Having all of your cycles
be of even length is an equivalent condition to being bipartite, so we know that our graph
must be bipartite.

To see the other direction: suppose that G is bipartite, with bipartition V1, V2. Define
fx,y = 1 and fy,x = −1 = 2, for all x ∈ V1, y ∈ V2; this evaluation means that for any
x ∈ V1, we have

fx,y1 + fx,y2 + fx,y3 = 1 + 1 + 1 ≡ 0 mod 3

and for any y ∈ V2, we have

fy,x1 + fy,x2 + fy,x3 = 2 + 2 + 2 ≡ 0 mod 3

by summing over their three neighbors in the other part of the partition. So this is a 3-flow,
and we’ve proven the other direction of our claim.

For simplicity’s sake, we introduce the function ϕ(G) to denote the smallest value of k
for which G admits a k-flow: if no such value exists, we say that ϕ(G) =∞.

We now list here a series of claims whose proofs we leave for the HW:

Proposition 6. ϕ(K2) =∞.

Proposition 7. More generally, a connected graph G has ϕ(G) = ∞ whenever G has a
bridge: i.e. there is an edge e ∈ E(G) such that removing e from G disconnects G.

Proposition 8. ϕ(K4) = 4.

Proposition 9. If n is even and not equal to 2 or 4, then ϕ(Kn) = 4.

4

Proposition 10. A graph G has a 4-flow if and only if we can write it as the union of
two even graphs: i.e. there are a pair of graphs G1, G2, with possibly overlapping edge and
vertex sets, such that V (G) = V (G1) ∪ V (G2), E(G) = E(G1) ∪ E(G2).

Proposition 11. A cubic graph G has a 4-flow if and only if it is three-edge colorable.

Corollary 12. The Petersen graph has no 4-flow.

On the HW, you (hopefully) showed that the Petersen graph does have a 5-flow earlier
in the week; therefore, we know that ϕ(Pete) = 5.

1.3 Open Conjectures

Surprisingly, when you start computing more of these numbers, it seems pretty much im-
possible to find anything that’s got a value of ϕ bigger than 5 and not yet infinity. This
motivated Tutte to make the following conjectures on k-flows, which are still open to this
day!

Conjecture 13. Every bridgeless graph has a 5-flow.

More surprisingly, it seems like the Petersen graph, in a sense, is unique amongst graphs
that have 5-flows:

Conjecture 14. Every bridgeless graph that doesn’t contain the Petersen graph as a minor
has a 4-flow.

Strange!

2 Using Graphs to Study Algebra: Cayley Graphs

This is not the only intersection of graph theory and algebra! Instead of looking at what
happens when we stick groups on top of existing graphs, we can think about ways to
create graphs that correspond to given groups! Specifically, over the next few classes we
will develop the concepts of Cayley graphs and Schreier diagrams, use them to study
various kinds of groups, and from there prove some very deep and surprising theorems from
abstract algebra!

In specific: this course kind-of has a natural split into two parts, (a) exploring the
concepts that link groups and graphs, and (b) using those concepts to prove results! This
section falls into the (a) camp; we’re going to mostly study a large stack of definitions and
examples here.

For the most part, I’m assuming everyone here remembers groups from the fall. However,
there are some specific group concepts that I want people to specifically recall for this class:
free groups, generating sets, presented groups, and cosets.

2.1 Preliminary Concepts

Definition. The free group on n generators a1, . . . an, denoted

〈a1, . . . an〉,

is the following group:

5

• The elements of the group are all of the strings of the form

ak1i1 a
k2
i2
. . . aklil ,

where the indices i1, . . . il are all valid indices for the a1, . . . an and the k1, . . . kl are
all integers.

• We also throw in an identity element e, which corresponds to the “empty string” that
contains no elements.

• Given two strings s1, s2, we can concatenate these two strings into the word s1s2 by
simply writing the string that consists of the string s1 followed by the string s2.

• Whenever we have ak in a string, we think of this as being

k copies︷ ︸︸ ︷
a · a · . . . a, i.e. k copies of

a. If we have multiple consecutive strings of a’s, we can combine them together into
one such ak: for example, the word a3aa2 is the same thing as the word a6.

• Finally, if we ever have an aa−1 or an a−1a occurring next to each other in a string,
we can simply replace this pairing with the empty string e.

For example, the free group on two generators 〈a, b〉 contains strings like

a6b4a−2b3a1, b12, a−1b−2a4b, . . .

As described earlier, we concatenate strings by simply placing one after the other: i.e.

a2b−2a3ba3 · a−3b−1a1b3 = a2b−2a3ba3a−3b−1a1b3.

As described above, we typically simplify this right-hand string by canceling out terms and
their inverses, and grouping together common powers of our generators:

a2b−2a3ba3 · a−3b−1a1b3 = a2b−2a3�b��a
3��a−3�

�b−1a1b3 = a2b−2a4b3

This is a group! In particular, concatenation is associative, the empty string e is clearly an
identity, and we can “invert” any word ak1i1 a

k2
i2
. . . aklil by simply reversing it and switching

the signs on the ki’s: i.e.

�
�ak1i1�

�ak2i2 . . .�
�aklil ·�

��a−klil
. . .

�
��a−k2i2 �

��a−k1i1
= e

Definition. Given a group G, we say that it is generated by some collection of elements
a1, . . . an ∈ G if we can create any element in G via some combination of the elements
a1, . . . an and their inverses. Note that some groups have multiple different sets of generators:
i.e. 〈Z,+〉 is generated both by the single element 1 and also by the pair of elements {2, 3}

Definition. In our above discussion, we have primarily defined groups by giving a set and
an operation on that set. There are other ways of defining a group, though! A group
presentation is a collection of n generators a1, . . . an and m words R1, . . . Rm from the free
group 〈a1, . . . an〉, which we write as

〈a1, . . . an | R1, . . . Rm〉.

We associate this presentation with the group defined as follows:

6

• Start off with the free group 〈a1, . . . an〉.

• Now, declare that within this free group, the words R1, . . . Rm are all equal to the
empty string: i.e. if we have any words that contain some Ri as a substring, we can
simply “delete” this Ri from the word.

You have actually seen some groups defined via a presentation before:

Example. Consider the group with presentation

〈a | an〉.

This is the collection of all words written with one symbol a, where we regard an = e: i.e.
it’s just

e, a, a2, a3, . . . an−1.

This is because given any string ak ∈ 〈a〉, we have ak = al for any k ≡ l mod n. This is
because we can simply concatenate copies of the strings an, a−n as many times as we want
without changing a string, as an = e!

You have seen this group before: this is just Z/nZ with respect to addition, if you

replace a with 1 and think of

k times︷ ︸︸ ︷
11 . . . 1 as k.

Often, we will give a group with a presentation in the form

〈a1, . . . an | R1 = R2, R3 = R4, . . . , . . . Rm−1 = Rm〉,

because it is easier sometimes to think of saying that certain kinds of words are equal rather
than other kinds of words are the identity; this is equivalent to the group presentation

〈a1, . . . an | R1(R2)
−1, R3(R4)

−1, . . . , . . . Rm−1(Rm)−1〉.

Definition. Suppose that G is a group, s ∈ G is some element of G, and H is a subgroup
of G. We define the right coset of H corresponding to s as the set

Hs = {hs | h ∈ H}.

We will often omit the “right” part of this definition and simply call these objects cosets.

Example. Consider the group G = 〈Z,+〉. One subgroup of this group is the collection of
all multiples of 5: i.e.

H = {. . .− 15,−10,−5, 0, 5, 10, 15 . . .}

This subgroup has several cosets:

• s = 0: this forms the coset

H + 0 = {. . .− 15,−10,−5, 0, 5, 10, 15 . . .},

which is just H itself.

7

• s = 1: this forms the coset

H + 1 = {. . .− 14,−9,−4, 1, 6, 11, 16 . . .}.

• s = 2: this forms the coset

H + 2 = {. . .− 13,−8,−3, 2, 7, 12, 17 . . .}.

• s = 3: this forms the coset

H + 3 = {. . .− 12,−7,−2, 3, 8, 13, 18 . . .}.

• s = 4: this forms the coset

H + 4 = {. . .− 11,−6,−1, 4, 9, 14, 19 . . .}.

Notice that this collection of cosets above is indeed the collection of all of the possible
cosets of H within G: if we take any other element in Z, like say 13, we’ll get one of the
five cosets above: i.e.

H + 13 = {. . .− 2, 3, 8, 13, 18 . . .} = H + 3.

In general, H + x = H + y for any x ≡ y mod 5.

Example. Consider the group G = 〈(Z/7Z)×, ·〉, i.e. the nonzero integers mod 7 with
respect to the multiplication operation. This has the set

H = {1, 6}

as a subgroup (check this if you don’t see why!)
This group has the following cosets:

• s = 1, which creates the cosets H · 1 = H,

• s = 2, which creates the coset

H · 2 = {2, 5}.

• s = 3, which creates the coset

H · 3 = {3, 4}.

• s = 4, which creates the coset

H · 4 = {4, 3}.

Notice that this coset is the same as H · 3.

8

• s = 5, which creates the coset

H · 5 = {5, 2}.

Notice that this coset is the same as H · 2.

• s = 6, which creates the coset

H · 6 = {6, 1}.

Notice that this coset is the same as H.

Example. Consider the group S3. This group has the subgroup

H = {id, (123), (132)}

as a subgroup. This subgroup has two possible distinct cosets:

• H · id = H · (123) = H · (132) are all the same coset, which is just H.

• H · (12) = H · (13) = H · (23) = {(12), (13), (23)}.

With these definitions set down, we can actually start to do some graph theory:

2.2 Cayley Graphs and Groups

Definition. Take any group A along with a generating set S. We define the Cayley graph
GA,S associated to A as the following directed graph:

• Vertices: the vertices of GA are precisely the elements of A.

• Edges: for two vertices x, y, create the oriented edge (x, y) if and only if there is some
generator s ∈ S such that x · s = y. If this happens, we decorate the edge (x, y) with
this generator s, so that we can keep track of how we have formed our connections.

We consider a few examples here:

Example. The integers Z with the generator 1 have the following very simple Cayley graph:

=1

This is not hard to see: we have one vertex for every element in our group (i.e. every
integer,) and an edge (x, y) for each pair x, y such that x = y + 1, by definition. Because
this is a Cayley graph, we label each of these edges with the generator that created that
edge: for this graph, because there’s only one generator this is pretty simple (we just label
every edge with a 1.)

9

Example. The integers Z with the generating set {2, 3} have the following Cayley graph:

0 2 4 6-2-4

1 3 5-1-3-5

=3=2

Again, our vertices are just the integers. However, this time we have two generators: the
generator 2 connects any two integers that differ by 2, while the generator 3 connects any
two integers that differ by 3. Notice that this graph is not the same as the graph above:
in general, a group can have many markedly different Cayley graphs depending on the
generators that you pick for it.

Example. Consider the symmetric group S3 with generators (12), (123). First, we calculate
how these generators interact with our group elements when composed together:

group elt. ◦ generator id (12) (13) (23) (123) (132)

(12) (12) id (123) (132) (13) (23)
(123) (123) (23) (12) (13) (132) (123)

We can use this table to create the Cayley graph for this group and generating set:

=(123)

=(12)

id (123)

(12)

(132)

(13)

(23)

Example. Consider the group given by the presentation

〈a, b | a3 = b2 = (ab)2 = id〉.

10

Because we do not know all of the elements in this group ahead of time, it is not necessarily
obvious how to create this group’s Cayley graph; unlike in our earlier examples, we cannot
simply write down all of the vertices and then draw edges corresponding to our generators.

Instead, to find the Cayley graph corresponding to this group, we can use the following
procedure:

0. Start by placing one vertex that corresponds to the identity.

1. Take any vertex corresponding to a group element g that we currently have in our
graph. Because our graph is a Cayley graph, it must have one edge leaving that vertex
for each generator in our generating set. Add edges and vertices to our graph so that
this property holds.

2. If some word Ri is a word that is equal to the identity in our group, then in our graph
the path corresponding to that word must be a cycle: this is because if this word is
the identity, then multiplying any element in our group by that word (i.e. taking the
walk on our graph corresponding to that word) should not change that element (i.e.
our walk should not take us somewhere new, and therefore should return to where it
started!)

Identify vertices only where absolutely necessary to insure that this property holds
at every vertex. (This is the computationally “difficult” part of this algorithm. In
general, finding the Cayley graph, or even more simply determining whether two
arbitrary words in a presented graph are equal, is an undecidable problem: it is
provable that no algorithm exists that will always solve this problem. Look up things
like the halting problem if you want more examples of such things.)

So: if we do this here, we would start by drawing the following graph.

=a

=b

id a

b

We add edge/vertex pairs to both of these added vertices a, b, that correspond to our
generators. Notice that the relation b2 = id tells us that our b-edge leaving b must return
to id, and that none of our other relations apply at this current stage (as they correspond
to walks of length at least 3.)

11

http://en.wikipedia.org/wiki/Halting_problem

id a

b ab

ba

=a

=b

a2

Now, we draw new edge from the vertices ab, ba, a2. Notice that the relation a3 = id tells
us that the a-edge leaving a2 returns to the identity, and that the relation b2 = id tells us
that the b edge leaving ab returns to a. Furtheromre, the relation abab = id, along with
the observations that b2 = id ⇒ b = b−1, a3 = id ⇒ a2 = a−1 gives us a number of new
relations:

• abab = id ⇒ bab = a−1 = a2, and therefore the b-edge leaving ba goes to a2. Fur-
thermore, this also tells us that the b-edge leaving a2 goes to ba, because the walk
corresponding to b2 starting from ba must return to ba.

• abab = id ⇒ aba = b−1 = b, and therefore that the a-edge leaving ab goes to b.
Furthermore, this also tells us that the a-edge leaving ba goes to ab, because the walk
corresponding to a3 starting at ab must return to ab.

This gives us the following graph:

id a

b

a2

ab

ba

=a

=b

12

At this stage, we have satisfied our second property (that there is an edge leaving each
vertex for each generator,) and we have only identified vertices when absolutely forced to
do so by our relations. From visual inspection, it is clear that we satisfy the three relations
a3 = b2 = abab = id at every vertex; so this is the Cayley graph corresponding to our group!

3 Schreier Diagrams

This class’s lecture continues last’s class’s discussion of the interplay between groups and
graphs. In specific, we define the Schreier diagram in these notes, calculate some exam-
ples, and (if there is time) look at some applications of these techniques!

3.1 Schreier graphs

Definition. Take a group G, a subgroup H of G, and some collection of elements S that
generate G. We create the Schreier diagram corresponding to this collection of informa-
tion as follows:

• Vertices: the various right cosets of H in G.

• Edges: connect two cosets K,L with an edge if and only if there is some element s ∈ S
such that Ks = L.

In this sense, a Cayley graph is simply a Schreier diagram where we set H = {id}.

We consider a pair of examples:

Example. Let’s take G = S3 as before, with the subgroup H = {id, (12)} and generating
set a = (123). This group has three possible cosets for H to bounce between:

H = H · (12) ={id, (12)},
H · (13) = H · (132) ={(13), (132)},
H · (23) = H · (123) ={(23), (123)}.

This gives us a fairly simple Schreier diagram, if we use the fact that a2 = (132):

id H(123)

H(132) =a

13

Example. Consider the group G = D8 = the collection of all symmetries of a square. We
denote its eight elements, defined in last week’s lecture notes, as the set

{id, rot(90◦), rot(180◦), rot(270◦), flip(|),flip(−), flip(�), flip(�)}.

By the “flip(line)” expressions, we mean the four symmetries of the square that consist of
flipping the square over some axis, with the appropriate axis given in parentheses next to
each flip.

Take the subgroup H = {id, rot(180◦)} along with the generators S = {a = flip(�), b =
flip(−)}. Our subgroup has four possible cosets:

H = H · rot(180◦) = {id, rot(180◦)},
H · rot(90◦) = H · rot(270◦) = {rot(90◦), rot(270◦)},

H · flip(|) = H · flip(−) = {flip(|), flip(−)},
H · flip(�) = H · flip(�) = {flip(�),flip(�)}.

This gives us another fairly simple Schreier diagram:

id H·f(-)

=a

H·f() H·r(90°)

=b

The ease of the above two calculations indicates part of the reason why we might like
Schreier diagrams: they are often easier to calculate than Cayley graphs. In exchange,
however, we’re only getting information about the cosets of H instead of the elements of
our group — but if we only care about the elements of our group “up to” the elements H
of our coset, this is still pretty great!

To illustrate a situation where working with the Schreier diagram is markedly easier
than the Cayley graph, consider the following problem:

Problem. Consider the presented group

〈a, b | a2 = b5 = (ba)3 = id〉,

which has < b | b5 = id >= {id, b, b2, b3, b4} as a subgroup. What is the Schreier diagram
of this group with the generators {a, b}?

Answer. We use the same heuristics to find this Schreier graph that we used to find the
Cayley graph for a presented group. We copy these heuristics from our earlier set of notes
here:

14

0. Start by placing one vertex that corresponds to the “identity” coset H.

1. Take any vertex corresponding to a coset K that currently has a corresponding vertex
in our graph. Because our graph is a Schreier graph, it must have one edge leaving
that vertex for each generator in our generating set. Add edges and vertices to our
graph so that this property holds.

2. If some word Ri is a word that is equal to the identity in our group, then in our graph
the path corresponding to that word must be a cycle: this is because if this word
is the identity, then multiplying any element in our group by that word should not
change that element.

Identify vertices only when forced by our relations to insure that this property holds
at every vertex.

3. Also, when we draw edges out of the “identity” coset H, we may be forced to have
some of those edges return to H: i.e. in the group above, Hb = H. So for this first
vertex, we might be forced to have some self-loops that don’t correspond to our words.
This can sometimes happen later as well, depending on what H is (see problem 2 in
HW 12 for an example!); watching out for this is one of the “fun” parts of drawing a
Schreier diagram!

We run this process here. We start with one vertex corresponding to the coset H:

H

=a

=b

Ha

Note that because Hb = H, the b-edge leaving H returns to H itself, forming a loop. (This
illustrates some of the slightly trickier aspects of working with cosets instead of groups.
This, however, is the only time this will come up, which perhaps illustrates that cosets
aren’t so bad after all.)

We now take our one new vertex Ha and draw the two a, b-edges leaving Ha:

H

=a

=b

Ha

Hab

Here, we use the relation a2 = id to conclude that Ha2 = H.
We now draw the edges leaving Hab:

15

H

=a

=b

Ha

Hab
Hab2

Haba

And repeat this process on Hab2, Haba:

H

=a

=b

Ha

Hab
Hab2

Hab3

Hab2a

Haba

Notice here that the relation a2 = id means that the a-edge leaving Haba returns to Hab;
in general, this property will always insure that these a-edges come in pairs, and we will
use this identification throughout the rest of this proof without calling it out.

More interestingly, note that Habab = Ha. This is because bababa = id is equivalent to
asking that the walk corresponding to bababa starting at the origin returns to the origin.
After the first four steps, we are at Haba; to return to H along an a-edge, we must go to
Ha, which forces our connection.

We draw more edges:

H

=a

=b

Ha

Hab
Hab2

Hab3

Hab2a

Hab2ab
Haba

Notice that Haba = Hab4; this is because if we start at Haba and take the walk of length
5 given by the b-edges, we should return to ourselves. Also notice that Hab3a = Hab2ab;
this is because the walk bababa starting at Hab3 must return to itself, and therefore that
the a-edge leaving Hab3 must go to whatever b-edge leaves Hab2a.

16

H

=a

=b

Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Nothing nontrivial was identified above, so we continue our process:

=a

=b

Hab2ab3

Hab2ab2a

H Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Still nothing. More edges!

Hab2ab3

=a

=b

Hab2ab3a

Hab2ab2a

H Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Ok, now some interesting things have happened. Notice that we’ve identified Hab2ab2a
with Hab2ab4; this is again because of the walk bababa = id, starting this time from the
vertex Hab2. In particular, because walking baba from Hab2 takes us to Hab2ab2a and
walking ba more must return us to Hab2, we know that our b-edge leaving Hab2ab2a must
go to Hab2a. Similarly, taking the walk b5 starting from this Hab2ab2a vertex must return
us to ourselves, forcing the b-edge leaving Hab2ab3 to go to Hab2ab2a.

We draw our last batch of edges:

17

=a

=b

Hab2ab3 Hab2ab3a

Hab2ab4

H Ha

Hab
Hab2

Hab3

Hab2a

Hab4 Hab2ab2
Hab2ab

Note that the b-edge leaving Hab2ab3a must return to itself, as the walk bababa = id starting
from the vertex Hab2ab3 forces the b-edge leaving Hab2ab3a to return to itself.

This gives us a ton of useful information about our group: it tells us that there are 60
elements (as we have 12 cosets, each containing 5 elements), and moreover it tells us how
these cosets get moved around by a and b (in particular, looking at our graph tells us that
b keeps two cosets constant and moves the other 10 around in two groups of 5.) For those
of you who have done some group theory before, this actually is enough to tell us what this
group is in its entirety (it’s A5, the alternating group on 5 elements!)

It turns out that adding a bit more information to our diagram can make them even
more useful:

3.2 Decorated Schreier Diagrams

Definition. Given a Schreier diagram for a group G with subgroup H and generators S
that we’ve labeled our edges with, we can decorate it! We do this as follows:

• Take all of the vertices of our Schreier diagram. Each vertex corresponds to a coset K.
Pick some element k ∈ K, and use that element to decorate the vertex corresponding
to that coset.

Notice that if we have decorated a coset K with some element k ∈ K, then we can
actually write K = Hk. So this decoration is a pretty natural one to use.

• Now, suppose that there is an a-edge going from one coset K = Hk to another coset
L = Hl. We decorate this edge with the group element α such that ka = αl.

Notice that because L = Ka = Hka, we can write l = hka for some h ∈ H, and thus
have ka = αhka⇒ α = h−1. In particular, this means that all of the edge decorations
(1) exist, as we found a formula to find them, and (2) are all elements from our coset
H.

Decorated Schreier diagrams satisfy a fairly interesting property:

Proposition. Take any Schreier diagram for a group G with subgroup H. Decorate it.
Take any closed walk in our Schreier diagram that starts and ends at the H-vertex1. The

1In a directed walk, this is potentially ambiguous. For this talk, we mean any subgraph that when we
forget the orientations of our edges, we get something that would be a closed walk in an unoriented graph.

18

product of the group elements used to label the edges of this closed walk, in the order given
by our closed walk, is the same thing as the product of the group elements used to decorate
our edges (in the order given by our closed walk.)

Proof. To illustrate the idea, let’s take an arbitrary decorated three-vertex cycle starting
from some coset Hk, where the edges are oriented as drawn below:

Hl

=a

=b

Hm

Hk

=c

[γ]

[β]

[α]

A decorated three-cycle from within some Schreier graph. The vertices Hk,Hl,Hm are all decorated via

their representatives k, l,m. There is an edge Hk → Hl given by the generator a, Hl → Hm given by the

generator b, and Hm→ Hk given by c; as well, these three edges are decorated by the labels α, β, γ.

Notice that because the a-edge Hk → Hm is decorated with an α, we have ka = αl;
similarly, because the b-edge Hl→ Hm is decorated with β, we have lb = βm, and because
the c-edge Hm→ Hk is decorated with γ, we have mc = γk.

Consequently, if we look at the product kabc, we have

kabc = αlbc = αβmc = αβγk.

In particular, if k = id — in other words, if Hk = H — we have abc = αβγ. In other
words, the product of the “labels” on our cycle is the same thing as the product of the
“decorations” on our cycle!

This proof generalizes to oriented cycles of length n by almost exactly the same proof:
simply take any cycle with vertices decorated k1, . . . kn, edges ki → ki+1 labeled ai and
decorated αi. Then by the exact same argument as above, we have

k1a1a2 . . . an = α1k2a2 . . . an = . . . α1α2 . . . αnk1,

which gives us a1a2 . . . an = α1α2 . . . αn in the case that the vertex corresponding to k1 is
the subgroup H (i.e. k1 = id.)

We finally note that because the condition ka = αl is equivalent to the request αk =
la−1, we can deal with the situation where edges are oriented in the “wrong” directions by
simply replacing the a, α’s with their inverses. For example, suppose we returned to our
triangle from before, but messed with some of the orientations:

19

Hl

=a

=b

Hm

Hk

=c

[γ]

[β]

[α]

In this situation, we would use the relations

• la = αk ⇒ ka−1 = α−1l,

• lb = βm,

• kc = γm⇒ mc−1 = γ−1k

to perform the transformation

ka−1bc−1 = α−1lbc−1 = α−1βmc−1 = α−1βγ−1k.

Again, setting k = 1 gives us that the product of the labels of edges in our closed walk is
the same as the product of the decorations of edges in our closed walk, provided that we
interpret the “orientation” of each edge as telling us whether a group element is represented
by itself or its inverse.

One convenient way to decorate a Schreier diagram is via the following process:

Proposition. Take any Schreier diagram for a group G with subgroup H. The following
process induces a unique decoration of this diagram:

• Decorate the H-vertex with the element id ∈ H.

• Pick out some spanning tree2 T in our graph. Decorate all of the edges in this spanning
tree with the element id ∈ H.

Proof. This is not too hard to see. Look at any vertex K that is distance 1 from H, where
we measure distance from the origin via our spanning tree: i.e. we are declaring that a vertex
is distance n from H if there is a path of length n from H to that vertex in our spanning
tree T . Because T is a spanning tree, this gives a well-defined distance function.

2Recall that a spanning tree of a graph G is a subgraph of G that (1) is a tree, and (2) contains every
vertex in our graph. In this setting, where we are dealing with directed graphs, this notion might again be
ambiguous; for this talk, we further define a tree as any subgraph that when we forget the orientations of
our edges, we get something that would be a tree in an unoriented graph.

20

Suppose that the edge in our spanning tree connecting K to the origin is labeled a, and
goes from H → K. If we want H to be decorated as id and this a-edge to be labeled id,
we are asking that the decoration of K is some element k ∈ K such that id · a = k · id: i.e.
that each of these vertices K has a unique decoration, given (in this particular case) by the
edge-labeling that led to that coset.

The other case, where the edge goes from K to H, is similar; if we want H decorated
as id and the a-edge K → H to be decorated id, then we must have K decorated with
a k such that ka = id · 1 = id, which again uniquely determines k. (This is like the
orientations-corresponding-to-inverses relationship we saw in our earlier result.)

Now, suppose that we have decorated all of the vertices out to distance n, and want to
decorate vertices at distance n+ 1. Take any K at distance n+ 1: because T is a spanning
tree, there is some unique edge connecting a previously-decorated vertex L at distance n to
our vertex K via an edge in T . Assume this edge is labeled with some element a, decorated
by id, and that L is decorated with some element l.

Then, if the edge goes from L→ K, K must be decorated with an element k such that
la = id · k; similarly, if the edge goes from K → L, K must be decorated with some k
such that ka = id · l. Notice that this uniquely defines K’s labeling. Furthermore, notice
that this labeling is conflict-free: because T is a tree, there is no way for us to have two
conflicting claims as to what K’s decoration should be.

This decorates all of the vertices in our graph. Now, take any edge K → L in our graph
that we have not yet labeled (i.e. any edge not in the spanning tree.) Consider the closed
walk formed by starting at H, walking to K along the unique path to K in our spanning
tree, taking the edge K → L, and walking back to H via the unique path back to H in our
spanning tree. This is a closed walk; therefore, the product of the decorations of edges on
this walk must be equal to the product of the labelings of edges on this walk!

But every edge in our walk is decorated by 1’s, except for the K → L edge which we’re
trying to decorate. Therefore, this gives us a unique decoration of this edge, given by the
labelings of the walks H → K and L→ H. So we’ve decorated our graph!

This method of decoration has an interesting consequence:

Theorem. Take any Schreier diagram for a group G with subgroup H, along with a gen-
erating set S for G. Decorate this diagram. Then the subgroup H is generated by the
decorations of the edges in our graph.

Proof. Take any element h ∈ H. Because S generates G, we can write h as some product
s1 . . . sn of elements (possibly repeated and with inverses) from S. This corresponds to a
walk on our Schreier graph: furthermore, because s1 · . . . · sn = h ∈ H, this walk must start
and end at H.

Decorate our Schreier diagram (say, using the decoration given above.) Now, the product
of labels on this walk must be equal to the product of the decorations of the edges on this
walk: in other words, we can write h as the product of some of the decorations of the edges
in our graph! So any h can be written as the product of decorations in our graph.

Furthermore, by using walks that start at H and walk along edges in the spanning
tree to get to any edge in our graph, walking on that edge, and then returning along our
spanning tree edges, we can see that the decoration of any edge in our graph is an element
in our subgraph. Therefore H is generated by these decorations, as claimed!

21

This theorem has the following very beautiful extension:

Corollary. Take any Schreier diagram for a group G with subgroup H, along with a
generating set S for G. Decorate this diagram. Suppose that G has a presentation
〈a1, a2, . . . | R1, R2, . . .〉. Then the subgroup H has a remarkably nice presentation:

H = 〈d1, d2, . . . | D1,1D1,2 . . . , D2,1, D2,2, . . .〉,

where

• The generators d1, d2, . . . are all of the decorations of edges in our graph.

• The relations D1, D2, . . . are given by the following process: take any relation Ri from
G. Ri corresponds to a labeled walk in G’s Cayley graph, that starting from any
vertex must return to that vertex. In other words, in our group, the product of the
labelings on this walk’s edges must be the identity.

Now, we know that the product of the labels on this walk must be equal to the product
of the decorations on this walk. In other words, a relation Ri on our generators
can create several relations on the generators d1, d2, . . .! Call these new relations
Di,1, . . . Di,n.

The main point of the above discussion is that all of the relations on H must come, in
some sense, from pre-existing relations in G. (Think for a bit if this isn’t clear; there is
some nonobvious mathematics going on in this statement!)

If we consider the case where G is a free group (i.e. a group with no relations) we get
the following result “for free:”

Corollary. Any subgroup of a free group is free.

For those of you who haven’t done group theory before, this might not be very surprising,
and seem like it should be a relatively “trivial” result. This is far from the truth; what
we’ve presented here is the closest to a purely algebraic proof that is known, and is one of
the simplest proofs I am aware of3!

3The other one I know goes through algebraic topology, and is similar in difficulty.

22

	Algebraic Flows
	Definitions and Fundamental Results
	Some Calculations
	Open Conjectures

	Using Graphs to Study Algebra: Cayley Graphs
	Preliminary Concepts
	Cayley Graphs and Groups

	Schreier Diagrams
	Schreier graphs
	Decorated Schreier Diagrams

