CCS Discrete II
 Homework 1: Error-Correcting Codes

Due Friday, Week 1
UCSB 2015

Do one of the three problems below! Prove all of your claims.

1. Historically, one of the first codes developed was the Hamming [7, 4] code. It works like this: take any string of four bits (i.e. any string of four 0's and 1's.) Turn this into a string of seven bits in the following way:

- Place the bits of the original message, in order, in the slots $3,5,6,7$.
- In slot 1 , put the parity ${ }^{1}$ of the sum of the bits in slots $3,5,7$.
- In slot 2 , put the parity of the sum of the bits in slots $3,6,7$.
- In slot 4 , put the parity of the sum of the bits in slots $5,6,7$.

For example, to encode the message 1010, we would first place
_-1_010;
then, because $1+0+0=1,1+1+0=0,0+1+0=1$, we would fill in the remaining slots to get

$$
1011010 .
$$

This is a 2-ary code of length 7 . Find its information rate and its minimum distance.
2. Create a 4-ary code of length 4 and distance 3 , that contains 16 elements.
3. Find the largest 2-ary (i.e. binary) code of length 10 and distance 4 that you can come up with.
Note: your score for problem 3 here is (\# elements in your code)/(maximum number of elements in codes discovered by your classmates), provided that you show your work/justify your claims! I think the maximum is 40 , and that we discovered this in 1980. Coding skills may be useful here.

[^0]
[^0]: ${ }^{1}$ The parity of a number n is just $n \bmod 2$. In other words, it is 1 if n is odd, and 0 if n is even.

