CCS Discrete II
 Homework 15: Random Graphs

Due Friday, Week 10
UCSB 2015

Do three of the six problems listed here! Have fun, prove all of your claims, and let me know if you have any questions!

1. More Sim variations! Consider the following game, which we can think of as impartial or colorblind Sim:

- There are two players, Player 1 and Player 2. Their gameboard consists of n points drawn on a plane. Players alternate turns, and Player 1 starts first.
- On a given player's turn, they must connect two points that do not have a line drawn between them yet. All lines are drawn in black.
- You lose if your chosen move on any turn creates a triangle.

This is like Sim if you were colorblind (and thus to be safe had to avoid all triangles.)
Who wins ${ }^{1}$ this game on $n=5$?
2. Yet more Sim variations! Consider the following game, which we can think of as misère impartial or colorblind Sim:

- There are two players, Player 1 and Player 2. Their gameboard consists of n points drawn on a plane. Players alternate turns, and Player 1 starts first.
- On a given player's turn, they must connect two points that do not have a line drawn between them yet. All lines are drawn in black.
- You win if your chosen move on any turn creates a triangle.

This is like misère Sim if you were colorblind.
Determine who wins this game for all values of n !
3. Let $\mathcal{F}(\mathbb{N})$ denote the collection of all finite subsets of \mathbb{N}. Prove that $\mathcal{F}(\mathbb{N}) \times \mathcal{F}(\mathbb{N})$ is a countable set.
4. Let $\langle\Omega, \operatorname{Pr}\rangle$ be some probability space, and $A_{1}, A_{2} \ldots A_{k}$ a collection of mutually independent events in this space.
(a) Prove that $\operatorname{Pr}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right)=\prod_{i=1}^{k} \operatorname{Pr}\left(A_{i}\right)$.
(b) For any event A_{i}, let $A_{i}^{c}=\left\{\omega \in \Omega \mid \omega \notin A_{i}\right\}$; i.e. A_{i}^{c} is the complement to A_{i}. Prove that the events $A_{1}^{c}, \ldots A_{k}^{c}$ are all mutually independent.

[^0]5. Take the Rado graph R from Wednesday, week 9's lecture. Delete finitely many vertices and edges from this graph, to get some new graph R^{\prime}. Is R^{\prime} isomorphic to R ? If it is, prove your claim; if it is not, give an example that proves that this can fail.
6. Consider the graph \mathcal{B} on the vertex set \mathbb{N}, formed by drawing an edge $\{x, y\}$ between two numbers x, y whenever either the x-th bit of y 's binary representation is 1 , or the y-th bit of x 's binary representation is 1 . So, for example:

- The two vertices 46,3 would be connected, as $46=101110_{\text {binary }}$, and the third bit of this sequence is a 1 .
- Similarly, the two vertices 19,4 would not be connected; $19=10011_{\text {binary }}$, the fourth bit of which is 0 , and similarly $4=100_{\text {binary }}$, and the $19 \mathrm{th}_{\mathrm{bit}^{2}}$ of that sequence is also 0 .

Show that this graph is isomorphic to the Rado graph.

[^1]
[^0]: ${ }^{1}$ Warning: in general, this problem is open for general values of n as far as I know. See "One-color Triangle Avoidance Games" and "On Hajnal's Triangle-free Game" for more information. So a general solution for all n is probably very hard, though if you can find it that would be really exciting!

[^1]: ${ }^{2}$ By the " 19 th bit of $100_{\text {binary }}$, we just mean the 19 th bit of this number in binary, where we can naturally think of $100_{\text {binary }}=000 \ldots 0100_{\text {binary }}$. In other words, adding leading zeroes doesn't change numbers, and lets us refer to the " n-th bit" of any number and always have that quantity be defined.

