CCS Discrete II

Homework 16: The Unit Distance Graph

Due Friday, Week 10
UCSB 2015

Do one of the four problems listed here! Have fun, prove all of your claims, and let me know if you have any questions!

1. Finish our proof that $\chi\left(\mathbb{Q}^{2}\right)$ is rational by proving the following claims:
(a) Take any two rational numbers $\frac{a}{b}, \frac{c}{d}$ written so that $G C D(a, b)=1=G C D(c, d)$. Suppose that $a^{2} d^{2}+b^{2} c^{2}=b^{2} d^{2}$.
Prove that both b and d must be odd.
(b) Using (a), take any two points $\vec{q}, \vec{r} \in \mathbb{Q}^{2}$. Show that if $d(\vec{q}, \vec{r})=1$, then $\vec{q} \sim \vec{r}$ under the equivalence relation defined in class on Monday.
(c) Take the collection of all rational points equivalent to (0,0), under the equivalence relation defined in class. Color points in this class red when they are of the form $\left(\frac{o d d}{o d d}, \frac{o d d}{o d d}\right)$ or $\left(\frac{\text { even }}{\text { odd }}, \frac{\text { even }}{\text { odd }}\right)$, and color them blue otherwise; i.e. color points blue when they are of the form $\left(\frac{o d d}{\text { odd }}, \frac{\text { even }}{\text { odd }}\right)$ or $\left(\frac{\text { even }}{\text { odd }}, \frac{\text { odd }}{\text { odd }}\right)$.
Prove the claim we made in class: any two points that are distance 1 apart in this class are colored different colors.
2. Zorn's lemma, in mathematics, says the following:

Lemma 1 (Zorn's lemma). Suppose that (P, \leq) is a nonemptu partially ordered set ${ }^{1}$ with the following property: in any totally ordered subset ${ }^{2} T$ of P, there is an upper bound u : i.e. an element u such that for any other $a \in T, a \leq t$.

Then P has a maximal element: i.e. there is some $m \in P$ such that we never have $m<a$ for any $a \in P$.

Prove this, using the axiom of choice.
3. Let \mathbb{Q}^{3} denote the graph on \mathbb{Q}^{3} formed by connecting \vec{v}, \vec{w} with an edge if and only if $d(\vec{v}, \vec{w})=1$. Show that $\chi\left(\mathbb{Q}^{3}\right)=2$.

[^0]
[^0]: ${ }^{1}$ A partially ordered set (P, \leq) is a set P and a binary relation \leq such that \leq satisfies the folowing three axioms:

 - $a \leq a$ (reflexivity)
 - $a \leq b$ and $b \leq a$ implies $a=b$ (antisymmetry)
 - $a \leq b$ and $b \leq c$ implies $a \leq c$ (transitivity).
 ${ }^{2}$ A subset T of P is called totally ordered if every two elements are comparable in T : i.e. for any $a, b \in T$, $a \leq b$ or $b \leq a$.

