Homework 17: Various Odds and Ends (Extra Credit)

Due Friday, Finals Week UCSB 2015

This set is extra-credit! If you want to receive said credit for this set, finish it and get it to my office (or my email if you're leaving before then) by 11:30am on Friday.

Also this set is fun! (Recall from previous sets the relative difficulty level of "fun".) Do as many as you want; credit will be given for up to three correct answers.

1. Prove that the chromatic number of space is at least 5 . (By "space," we mean \mathbb{R}^{3}, where we connect two points with an edge if and only if they are distance one apart.
2. (Do not do this problem if you haven't done problem 1 yet!) Read the paper "On the space chromatic number," by Oren Nechustan:
http://www.sciencedirect.com/science/article/pii/S0012365X00004064
Summarize its proof (i.e. give a writeup that you would use for a lecture to your peers) that $\chi\left(\mathbb{R}^{3}\right) \geq 6$.
3. Prove that the chromatic number of space is at most 21. (By "space," we mean \mathbb{R}^{3}, where we connect two points with an edge if and only if they are distance one apart.
4. Using Zorn's lemma, prove the De Bruijn-Erdös Compactness theorem:

Theorem. Suppose that k is a natural number and G is a graph such that every finite subgraph of G can be properly vertex-colored with at most k colors.
Then G itself can be properly vertex-colored with at most k colors.
5. Take any coloring of the plane \mathbb{R}^{2}, pick any of our colors, and let C be the collection of all points in the plane that are colored that color. We say that C realizes distance s if there are two points in C that are distance s apart, and say that it forbids distance s otherwise.
We say that a coloring of the plane \mathbb{R}^{2} is polychromatic if and only if no single color realizes every possible distance. We define the polychromatic number of the plane as the smallest value k such that there is a k-coloring of the plane that is polychromatic, and denote this value as $\chi_{p}\left(\mathbb{R}^{2}\right)$. Prove that $\chi_{p}\left(\mathbb{R}^{2}\right) \leq \chi 6$.
6. Prove that $\chi_{p}\left(\mathbb{R}^{2}\right) \geq 3$. (The best known is slightly stronger, that $\chi_{p}\left(\mathbb{R}^{2}\right) \geq 4$. I don't know if 3 makes the problem easier yet, but the proof for 4 is certainly doable if difficult.)

