```
CCS Discrete II

\section*{Homework 2: More Error-Correcting Codes}

Due Friday, Week 2

Do three of the six problems below! Prove all of your claims.
1. Here's a fun problem from a UCSB Ph.D. student \({ }^{1}\) from their dissertation:

Question. You and two friends have been captured by eeeeevil logicians! They tell you ahead of time about the following puzzle they have for you:
- You will all be led into a locked room.
- Each person will have a hat placed on their head; hats are either black or white, and randomly decided for each person by flipping a fair coin.
- No one can see their own hat.
- Each person can see other people's hats.
- You and your friends cannot communicate once in the room.
- When the guards say so, you and your friends must all either guess the color of their own hat, or say "pass."
- If at least one person guesses correctly and no one is incorrect, you're free!
- If anyone guesses incorrectly, you are sad/eaten by bears.

Find a strategy that insures that on average, you are not eaten by bears three-quarters of the time.
2. A \(q\)-ary length \(n\) code \(C\) is called linear if the sum of any two codewords in \(C\), thought of as elements in \((\mathbb{Z} / q \mathbb{Z})^{n}\), is also a codeword in \(C\).
(a) Find a linear code.
(b) Find a nonlinear code.
(c) Is the Hamming [7,4] code from problem set 1 linear?
3. A \(q\)-ary length \(n\) code \(C\) is called perfect if there is some integer \(t\) such that for any element \(\mathbf{x} \in(\mathbb{Z} / q \mathbb{Z})^{n}\), there is a unique word in \(C\) within Hamming distance \(t\) of \(\mathbf{x}\).
(a) Find a perfect code
(b) Find a nonperfect code.
(c) Is the Hamming [7, 4] code from problem set 11 perfect?

\footnotetext{
\({ }^{1}\) Todd Ebert, 1998. The silly framing is me.
}
4. A Hadamard matrix is the following object: a \(n \times n\) matrix, with entries all \(\pm 1\), such that all of the columns are orthogonal \({ }^{2}\). For example,
\[
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\]
is a Hadamard matrix.
(a) For any \(n=2^{k}\) for some \(k\), find a Hadamard matrix.
(b) Take the columns of any \(n \times n\) Hadamard matrix, and replace the -1 's with 0 's. This gives you a binary code, all of whose codewords are length \(n\). What is the distance of this code? What is the information rate? (Fun fact: we used these codes to communicate with Mariner 9, the first spacecraft to orbit another planet!)
5. Prove that \(A_{q}(n, d) \leq q^{n+1-d}\).
6. In class, I claimed that we can assume that the codeword \(\overbrace{000 \ldots 0}^{n \text { zeroes }}\) is in any of our codes. Justify this claim as follows: given any base \(q\), define a Hamming-distancepreserving map \(\varphi:(\mathbb{Z} / q \mathbb{Z})^{n} \rightarrow(\mathbb{Z} / q \mathbb{Z})^{n}\) as any map with the following property:
- For any two codewords \(w_{1}, w_{2} \in(\mathbb{Z} / q \mathbb{Z})^{n}\), we have that \(d\left(w_{1}, w_{2}\right)=d\left(\varphi\left(w_{1}\right), \varphi\left(w_{2}\right)\right)\).
(a) For \(q=2, n=4\), create a Hamming-distance-preserving map that is not the identity.
(b) Prove that any Hamming-distance-preserving map is a bijection.
(c) For any code \(C\), let \(\varphi(C)\) denote the code given by \(\{\varphi(w) \mid w \in C\}\). Prove that if \(C\) is a code with \(d(C)=k\), then \(d(\varphi(C))\) is equal to \(k\) as well.
(d) Show that for any code \(C\), there is a Hamming-distance-preserving map \(\varphi\) that sends one codeword of \(C\) to the all-zero codeword \(\overbrace{000 \ldots 0}^{n \text { zeroes }}\).

\footnotetext{
\({ }^{2}\) Two vectors \(\left(a_{1}, a_{2}, \ldots a_{n}\right),\left(b_{1}, b_{2}, \ldots b_{n}\right)\) are called orthogonal if the sum \(\sum_{k=1}^{n} a_{k} b_{k}\) is equal to 0 . For example \((1,-3)\) and \((6,2)\) are a pair of orthogonal vectors.
}```

