Homework 3: Vector Spaces and Metrics

Due Friday, Week 2

UCSB 2015

Do one of the three problems below! Prove all of your claims.

- (a) Let C(ℝ) denote the collection of all continuous functions on the real numbers. Is this a vector space over ℝ? Prove your answer.
 - (b) Let $\mathcal{L}(\mathbb{R}) \cup \{0\}$ denote the collection of all discontinuous functions on the real numbers, along with the identically-0 function f(x) = 0. Is this a vector space over \mathbb{R} ? Prove your answer.
- 2. Given a field $\langle F, +, \cdot \rangle$, we say that a subset $G \subseteq F$ is a **subfield** of F if $\langle G, +, \cdot \rangle$ is a field in its own right (if we interpret $+, \cdot$ here as the same operations that we used on F.) For example, \mathbb{Q} is a subfield of \mathbb{R} , and \mathbb{R} is a subfield of \mathbb{C} . Conversely, $\mathbb{Z}/2\mathbb{Z}$ is not a subfield of \mathbb{Q} ; even though 0 and 1 are both elements of \mathbb{Q} , the addition operation on $\mathbb{Z}/2\mathbb{Z}$ does not agree with the addition operation on \mathbb{Q} .
 - (a) Find a field $\langle F, +, \cdot \rangle$ whose only subfield is itself.
 - (b) Show that if $\langle F, +, \cdot \rangle$ is a field and G is a subfield of F, then F is a vector space over the field G.
 - (c) Show that not all vector spaces have this structure: i.e. find a vector space V over a field F such that F is not a subfield of V.
- 3. Consider the following metric, called the "post office" metric, on \mathbb{R}^n :
 - For any $\vec{x} \in \mathbb{R}^n$, we have $d(\vec{x}, \vec{x}) = 0$.
 - For any $\vec{x} \neq \vec{y} \in \mathbb{R}^n$, we have $d(\vec{x}, \vec{y}) = ||\vec{x}|| + ||\vec{y}||$. (If you haven't seen this notation before, $||\vec{x}||$ denotes the quantity $\sqrt{x_1^2 + \ldots x_n^2}$.)

The idea with this metric is that if you want to mail a package from some location \vec{x} to another location \vec{y} , you often have to route it through some central packing location (in this case, $\vec{0}$.)

Prove that the post office metric is a metric.