Homework 4: Matrices

Due Friday, Week 3 UCSB 2015

This problem set is structured somewhat differently. Do the three problems in the required section! (I switched up the style here because there are a few things I really want you to do here in order for matrices to make sense.) As always, prove all of your claims, and have fun!

1 Required Problems

Take any field \mathbb{F}. In class, we proved that \mathbb{F}^{n} was a vector space over \mathbb{F}; common examples of this vector space were things like \mathbb{R}^{n} over \mathbb{R}, or $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ over $\mathbb{Z} / 2 \mathbb{Z}$.

Given this setup, we define a matrix as follows:
Definition. A $n \times n$ matrix A over a field \mathbb{F} is a particular kind of function from $\mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$. A matrix is specified by giving a $n \times n$ array of elements from \mathbb{F}, drawn as follows:

$$
A:=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]
$$

With this array of elements specified, we can define the function $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as follows: for any vector $\vec{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right) \in \mathbb{F}^{n}$, write

$$
A(\vec{v})=\left(\sum_{i=1}^{n} a_{1 i} v_{i}, \sum_{i=1}^{n} a_{2 i} v_{i}, \sum_{i=1}^{n} a_{3} v_{i}, \ldots, \sum_{i=1}^{n} a_{n i} v_{i}\right) .
$$

For example, the following object

$$
A=\left[\begin{array}{ccc}
\pi & \pi & 0 \\
0 & 2 & 1 \\
1 & 3 & -21
\end{array}\right]
$$

can be thought of as a 3×3 matrix over \mathbb{R}, and thus is a function from $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. If we wanted to know where A sends the vector ($1,2,1$), we could just use the definition above to calculate

$$
\begin{aligned}
A((1,2,1)) & =\left(\sum_{i=1}^{3} a_{1 i} v_{i}, \sum_{i=1}^{3} a_{2 i} v_{i}, \sum_{i=1}^{3} a_{3} v_{i}\right) \\
& =(\pi \cdot 1+\pi \cdot 2+0 \cdot 1,0 \cdot 1+2 \cdot 2+1 \cdot 1,1 \cdot 1+3 \cdot 2+(-21) \cdot 1) \\
& =(3 \pi, 5,-14) .
\end{aligned}
$$

1. (Warm-ups.) To get used to the above notation, calculate the following values:
(a) For $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, thought of as a matrix over \mathbb{R}, find $A((0,0,0)), A((3,4,2))$, and $A((1,-2,1))$.
(b) For $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$, thought of as a matrix over $\mathbb{Z} / 2 \mathbb{Z}$, find $A((0,0,0))$ and $A((1,0,1))$.
(c) Take any field \mathbb{F}; because \mathbb{F} is a field, it contains an additive identity 0 and a multiplicative identity 1 . Look at the $n \times n$ matrix A defined by putting 1 on the diagonal and 0 's elsewhere: in other words,

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Show that for any $\vec{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right) \in \mathbb{F}^{n}$, we have $A((\vec{v}))=\vec{v}$.
(d) Again, take any field \mathbb{F}. Consider the "all-zeroes" $n \times n$ matrix A, given by

$$
A=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

Show that for any $\vec{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right) \in \mathbb{F}^{n}$, we have $A((\vec{v}))=\overrightarrow{0}$.
2. Take any two vectors $\vec{v}, \vec{w} \in \mathbb{F}^{n}$. Define the dot product of $\vec{v} \cdot \vec{w}$ as follows:

$$
\vec{v} \cdot \vec{w}=\sum_{i=1}^{n} v_{i} w_{i} .
$$

For example, the dot product of $(1,2,3)$ and $(2,2,4)$, if both are thought of as vectors in $(\mathbb{Z} / 5 \mathbb{Z})^{3}$, is

$$
1 \cdot 2+2 \cdot 2+3 \cdot 4=18
$$

Take any $n \times n$ matrix A over a field \mathbb{F}. Let $\overrightarrow{a_{r_{i}}}$ denote the i-th row of A : that is, $\overrightarrow{a_{i}}=\left(a_{i, 1}, a_{i, 2}, \ldots a_{i, n}\right)$.
Prove that for any vector \vec{v}, we have

$$
A(\vec{v})=\left(\overrightarrow{a_{r_{1}}} \cdot \vec{v}, \overrightarrow{a_{r_{2}}} \cdot \vec{v}, \ldots \overrightarrow{a_{r_{n}}} \cdot \vec{v}\right) .
$$

3. Take any two $n \times n$ matrices A, B over a field \mathbb{F}. We think of these two objects as maps $\mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$; consequently, we can talk about composing these maps: that is, we can form the map $B \circ A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that sends a vector \vec{v} to $B(A(\vec{v}))$.
For example, if $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & -2 & -3 \\ 0 & 0 & 0 \\ 0 & 1 & 3\end{array}\right]$ are two matrices over \mathbb{R}, then we can find $(B \circ A)((-1,1,0))$ as follows:

$$
\begin{aligned}
(B \circ A)((-1,1,0)) & =B(A((-1,1,0))) \\
& =B((1 \cdot-1+2 \cdot 1+1 \cdot 0,2 \cdot-1+1 \cdot 1+2 \cdot 0,1 \cdot-1+1 \cdot 1+0 \cdot 0)) \\
& =B((1,-1,0)) \\
& =(-1 \cdot 1+-2 \cdot-1+-3 \cdot 0,0 \cdot 1+0 \cdot-1+0 \cdot 0,0 \cdot 1+1 \cdot-1+3 \cdot 0) \\
& =(1,0,-1) .
\end{aligned}
$$

(a) For $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}-1 & -2 \\ -1 & -2\end{array}\right]$ a pair of 2×2 matrices over \mathbb{R}, find $(B \circ A)((1,1))$ and $(B \circ A)((-2,0))$.
(b) Find two matrices A, B and a vector \vec{v} such that $(B \circ A)(\vec{v}) \neq(A \circ B)(\vec{v})$. (In other words, the order of composition is important when working with matrices!)
(c) Take any two $n \times n$ matrices A, B over some field F :

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right], B=\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \ldots & b_{1, n} \\
b_{2,1} & b_{2,2} & \ldots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n, 1} & b_{n, 2} & \ldots & b_{n, n}
\end{array}\right] .
$$

Denote the row vectors of B as $\overrightarrow{b_{r_{i}}}$'s and the column vectors of A as $\overrightarrow{a_{j}}$'s.
Consider the following $n \times n$ matrix C, made by placing $\overrightarrow{b_{r_{i}}} \cdot \overrightarrow{a_{c_{j}}}$ in each entry (i, j) :

$$
C=\left[\begin{array}{cccc}
\overrightarrow{b_{r_{1}}} \cdot \overrightarrow{a_{c_{1}}} & \overrightarrow{b_{r_{1}}} \cdot \overrightarrow{a_{c_{2}}} & \ldots & \overrightarrow{b_{r_{1}}} \cdot \overrightarrow{a_{c_{n}}} \\
\overrightarrow{b_{r_{2}}} \cdot \overrightarrow{a_{c_{1}}} & \overrightarrow{b_{r_{2}}} \cdot \overrightarrow{a_{c_{2}}} & \ldots & \overrightarrow{b_{r_{2}}} \cdot \overrightarrow{a_{\overrightarrow{c_{n}}}} \\
\ldots & \ldots & \ddots & \ldots \\
\overrightarrow{b_{r_{n}}} \cdot \overrightarrow{a_{c_{1}}} & \overrightarrow{b_{r_{n}}} \cdot \overrightarrow{a_{c_{2}}} & \ldots & \overrightarrow{b_{r_{n}}} \cdot \overrightarrow{a_{c_{n}}}
\end{array}\right] .
$$

Take any vector $\vec{v} \in \mathbb{F}^{n}$. Prove that $(B \circ A)(\vec{v})=C(\vec{v})$. (This process is what we refer to by "matrix multiplication;" we will usually denote the matrix C above as $B \cdot A$.)

