CCS Discrete II

Professor: Padraic Bartlett

Homework 4: Matrices

Due Friday, Week 3

UCSB 2015

This problem set is structured somewhat differently. Do the **three** problems in the required section! (I switched up the style here because there are a few things I really want you to do here in order for matrices to make sense.) As always, prove all of your claims, and have fun!

1 Required Problems

Take any field \mathbb{F} . In class, we proved that \mathbb{F}^n was a vector space over \mathbb{F} ; common examples of this vector space were things like \mathbb{R}^n over \mathbb{R} , or $(\mathbb{Z}/2\mathbb{Z})^n$ over $\mathbb{Z}/2\mathbb{Z}$.

Given this setup, we define a **matrix** as follows:

Definition. A $n \times n$ matrix A over a field \mathbb{F} is a particular kind of function from $\mathbb{F}^n \to \mathbb{F}^n$. A matrix is specified by giving a $n \times n$ array of elements from \mathbb{F} , drawn as follows:

$$A := \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$

With this array of elements specified, we can define the function $A : \mathbb{F}^n \to \mathbb{F}^n$ as follows: for any vector $\vec{v} = (v_1, v_2, \dots, v_n) \in \mathbb{F}^n$, write

$$A(\vec{v}) = \left(\sum_{i=1}^{n} a_{1i}v_i, \sum_{i=1}^{n} a_{2i}v_i, \sum_{i=1}^{n} a_{3}v_i, \dots, \sum_{i=1}^{n} a_{ni}v_i\right).$$

For example, the following object

$$A = \begin{bmatrix} \pi & \pi & 0\\ 0 & 2 & 1\\ 1 & 3 & -21 \end{bmatrix}$$

can be thought of as a 3×3 matrix over \mathbb{R} , and thus is a function from $\mathbb{R}^3 \to \mathbb{R}^3$. If we wanted to know where A sends the vector (1, 2, 1), we could just use the definition above to calculate

$$A((1,2,1)) = \left(\sum_{i=1}^{3} a_{1i}v_i, \sum_{i=1}^{3} a_{2i}v_i, \sum_{i=1}^{3} a_{3}v_i\right)$$

= $(\pi \cdot 1 + \pi \cdot 2 + 0 \cdot 1, 0 \cdot 1 + 2 \cdot 2 + 1 \cdot 1, 1 \cdot 1 + 3 \cdot 2 + (-21) \cdot 1)$
= $(3\pi, 5, -14).$

- 1. (Warm-ups.) To get used to the above notation, calculate the following values:
 - (a) For $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, thought of as a matrix over \mathbb{R} , find A((0,0,0)), A((3,4,2)), and A((1,-2,1)). (b) For $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, thought of as a matrix over $\mathbb{Z}/2\mathbb{Z}$, find A((0,0,0)) and A((1,0,1)).
 - (c) Take any field \mathbb{F} ; because \mathbb{F} is a field, it contains an additive identity 0 and a multiplicative identity 1. Look at the $n \times n$ matrix A defined by putting 1 on the diagonal and 0's elsewhere: in other words,

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Show that for any $\vec{v} = (v_1, v_2, \dots, v_n) \in \mathbb{F}^n$, we have $A((\vec{v})) = \vec{v}$.

(d) Again, take any field \mathbb{F} . Consider the "all-zeroes" $n \times n$ matrix A, given by

$$A = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Show that for any $\vec{v} = (v_1, v_2, \dots, v_n) \in \mathbb{F}^n$, we have $A((\vec{v})) = \vec{0}$.

2. Take any two vectors $\vec{v}, \vec{w} \in \mathbb{F}^n$. Define the **dot product** of $\vec{v} \cdot \vec{w}$ as follows:

$$\vec{v} \cdot \vec{w} = \sum_{i=1}^{n} v_i w_i.$$

For example, the dot product of (1, 2, 3) and (2, 2, 4), if both are thought of as vectors in $(\mathbb{Z}/5\mathbb{Z})^3$, is

$$1 \cdot 2 + 2 \cdot 2 + 3 \cdot 4 = 18.$$

Take any $n \times n$ matrix A over a field \mathbb{F} . Let $\vec{a_{r_i}}$ denote the *i*-th row of A: that is, $\vec{a_{r_i}} = (a_{i,1}, a_{i,2}, \dots a_{i,n})$.

Prove that for any vector \vec{v} , we have

$$A(\vec{v}) = (\vec{a_{r_1}} \cdot \vec{v}, \vec{a_{r_2}} \cdot \vec{v}, \dots \vec{a_{r_n}} \cdot \vec{v}).$$

3. Take any two $n \times n$ matrices A, B over a field \mathbb{F} . We think of these two objects as maps $\mathbb{F}^n \to \mathbb{F}^n$; consequently, we can talk about **composing** these maps: that is, we can form the map $B \circ A : \mathbb{R}^n \to \mathbb{R}^n$ that sends a vector \vec{v} to $B(A(\vec{v}))$.

For example, if $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 & -3 \\ 0 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ are two matrices over \mathbb{R} , then we can find $(B \circ A)((-1, 1, 0))$ as follows:

$$\begin{split} (B \circ A)((-1,1,0)) &= B(A((-1,1,0))) \\ &= B((1 \cdot -1 + 2 \cdot 1 + 1 \cdot 0, 2 \cdot -1 + 1 \cdot 1 + 2 \cdot 0, 1 \cdot -1 + 1 \cdot 1 + 0 \cdot 0)) \\ &= B((1,-1,0)) \\ &= (-1 \cdot 1 + -2 \cdot -1 + -3 \cdot 0, 0 \cdot 1 + 0 \cdot -1 + 0 \cdot 0, 0 \cdot 1 + 1 \cdot -1 + 3 \cdot 0) \\ &= (1,0,-1). \end{split}$$

- (a) For $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$ a pair of 2×2 matrices over \mathbb{R} , find $(B \circ A)((1,1))$ and $(B \circ A)((-2,0))$.
- (b) Find two matrices A, B and a vector \vec{v} such that $(B \circ A)(\vec{v}) \neq (A \circ B)(\vec{v})$. (In other words, the order of composition is important when working with matrices!)
- (c) Take any two $n \times n$ matrices A, B over some field F:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix}, B = \begin{bmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \dots & b_{n,n} \end{bmatrix}$$

Denote the row vectors of B as $\vec{b_{r_i}}$'s and the column vectors of A as $\vec{a_{c_j}}$'s. Consider the following $n \times n$ matrix C, made by placing $\vec{b_{r_i}} \cdot \vec{a_{c_j}}$ in each entry (i, j):

$$C = \begin{bmatrix} \vec{b_{r_1}} \cdot \vec{a_{c_1}} & \vec{b_{r_1}} \cdot \vec{a_{c_2}} & \dots & \vec{b_{r_1}} \cdot \vec{a_{c_n}} \\ \vec{b_{r_2}} \cdot \vec{a_{c_1}} & \vec{b_{r_2}} \cdot \vec{a_{c_2}} & \dots & \vec{b_{r_2}} \cdot \vec{a_{c_n}} \\ \dots & \dots & \ddots & \dots \\ \vec{b_{r_n}} \cdot \vec{a_{c_1}} & \vec{b_{r_n}} \cdot \vec{a_{c_2}} & \dots & \vec{b_{r_n}} \cdot \vec{a_{c_n}} \end{bmatrix}$$

Take any vector $\vec{v} \in \mathbb{F}^n$. Prove that $(B \circ A)(\vec{v}) = C(\vec{v})$. (This process is what we refer to by "matrix multiplication;" we will usually denote the matrix C above as $B \cdot A$.)