CCS Discrete II	Professor: Padraic Bartlett	
Due Friday, Week 4		

Pick three of five problems to solve. Prove all of your claims, and have fun!

1. Define the unit distance graph, denoted in the literature as \mathbb{R}^{2}, as follows:

- Vertex set: the collection of all points in \mathbb{R}^{2}.
- Edge set: connect two vertices if their corresponding points in \mathbb{R}^{2} are distance 1 apart in the plane.
This problem asks you to bound the chromatic number of \mathbb{R}^{2}.
(a) One easy lower bound is that you'll need at least three colors. This is because there is an equilateral triangle with side length 1 in \mathbb{R}^{2}, and therefore if we're coloring all of \mathbb{R}^{2} we'll need to give those three points different colors, or we'll have an edge with monochromatic endpoints.
Improve this bound by 1: i.e. prove that $\chi\left(\mathbb{R}^{2}\right) \geq 4$.
(b) Find any finite upper bound on the chromatic number of \mathbb{R}^{2} : i.e. find some $n \in \mathbb{N}$ such that $\chi\left(\mathbb{R}^{2}\right) \leq n$.

2. Prove that all "map-graphs" are planar.
3. A sequence $d_{1} \geq d_{2} \geq \ldots d_{n}$ of nonnegative integers is called graphic if and only if there is a graph G on n vertices such that $\operatorname{deg}\left(v_{i}\right)=d_{i}$, for every $v_{i} \in V(G)$.
Determine whether any of the following sequences are graphic:

- $5,3,3,2,2,2$.
- $6,2,2,2$.
- $3,2,2,2,1,1,1$
- $3,3,3,3,3,3,3,3,3,3$
$\underbrace{n, n, n \ldots n}_{n+1 \text { times }}$

4. A graph G is called Eulerian if it contains a path P that satisfies the following two properties:

- P starts and ends on the same vertex.
- P uses every edge in G exactly once.

Show that a graph G is Eulerian if and only if the degree of every vertex in G is even.
5. For a graph G, let $\Delta(G)$ denote the maximum degree of all of the vertices in G. Prove that if G is a graph, then $\chi(G) \leq \Delta(G)+1$.

