CCS Discrete II

Homework 7: Graphs (Fundamentals)

Due Friday, Week 5 UCSB 2015

Do three of the five problems listed here! Have fun, prove all of your claims, and let me know if you have any questions!

1. (a) Suppose that G is a graph on n vertices with m edges, where $n \geq 4$ and $m>\frac{n^{2}}{4}$. Prove that G contains an odd-length cycle as a subgraph.
(b) For any even n, create a graph on n vertices with $\frac{n^{2}}{4}$ edges that does not contain an odd-length cycle as a subgraph.
2. Given a graph G, its complement is the graph \bar{G} formed as follows:

- The vertices of \bar{G} are the same as the vertices of G.
- We connect two vertices in \bar{G} with an edge if and only if they are not connected by an edge in G.

(a) Show that for any graph G, at least one of G, \bar{G} are connected.
(b) A graph is called self-complementary if G is isomorphic to \bar{G}.

Prove that if n is a multiple of 4 , there is a self-complementary graph on n vertices.
3. Take a graph G. An automorphism of G is any isomorphism from a graph to itself. For example, take the graph G from above. It has two automorphisms: one where we send $v(1)=1, v(2)=2, v(3)=3, v(4)=4$, and another where we send $v(1)=2, v(2)=1, v(3)=4, v(4)=3$.

(a) Prove that the two automorphisms listed above are the only automorphisms of the graph G as drawn.
(b) Take any graph G, and let φ, ψ denote a pair of automorphisms of G (i.e. a pair of isomorphisms from G to G.) Prove that $\varphi \circ \psi$, the map created by composing these two functions, is also an automorphism.
(c) Let $\operatorname{Aut}(G)$ denote the collection of all of the automorphisms from a graph to itself. Prove that $\operatorname{Aut}(G)$ is a group.
4. Take a connected graph G. We defined a notion of distance on the vertices of a graph last week as follows: for any two vertices $x, y \in V(G)$, we say that $d(x, y)$ is equal to the length of the shortest path in G that connects x and y.
Prove that this notion of distance is a metric.
5. Given a connected planar graph G, we can form the dual to this graph, G^{*}, as follows:

- Vertices of G^{*} : the faces of G.
- Edges of G^{*} : connect two faces F_{1}, F_{2} if they share an edge in common.
(a) Prove that G^{*} is a connected planar graph.
(b) Show that the dual of G^{*}, i.e. $\left(G^{*}\right)^{*}$, is just the graph G again.
(c) Draw the five platonic solids as planar graphs.
(d) Find the dual of each solid.

