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Week 1 UCSB 2015

1 Error-Correcting Codes

To open our class, we’re going to study the following problem:

Problem. Suppose that you are the Voyager 1 probe. You are currently on the outer limits
of the solar system, and about to leave the solar system forever! Consequently, you want
to call your parents. However, you are currently separated from your parents by the vast
interstellar void of SPAAAAAAAAAACE.

SPAAAAACE

The vast interstellar void of space has an annoying habit of occasionally containing stray
electromagnetic waves that interfere with your communications back home; when you send
a signal back home (in binary, naturally), occasionally one of your 1’s will be switched into
a 0, or vice-versa. Assume that no more than one out of three consecutive bits in any
message you send will be scrambled.

How can you call home?

One solution to this problem you might come up with is to simply “build redundancy”
into the signals you send home, by sending (say) six 1’s every time you went to send a 1,
and six 0’s every time you went to send a 0. For example, to send the message “0101,”
you’d send

000000111111000000111111.

Then, even if some of the bits are flipped, your parents back on earth could still decode
your message. In particular, if at most one bit out of any consecutive three is flipped, each
of your all-0’s blocks will have at most two 1’s in them after errors are introduced, while
each of your all-1’s blocks will have at most two 0’s in them after errors. In either case, we
would never confuse one of these blocks with the other: if your parents received the signal

010010001111100001101011,
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they’d break it up into the four blocks

010010001111100001101011,

and “correct” the errors to

000000111111000000111111,

which is unambiguously the signal 0101.
This code can correct for the presence of one error out of any three consecutive blocks,

but no better (i.e. if we could have more than two errors in a block of six, we might have
three errors in a string of six: in this case it would be impossibe to tell what our string was
intended to be. For example, the string 000111 could have resulted from three errors on
the signal 000000, or three errors on the signal 111111.) It can accomplish this at the cost
of sending 6k bits whenever it wants to transmit k bits of information.

Can we do better? In specific, can we make a code that is more efficient (i.e. needs
less bits to transmit the same information,) or can correct for more errors? With a little
thought, it’s easy to improve our code above: if we instead simply replace each 0 with just
000 and each 1 with 111, our code can still correct for the presence of at most one error in
any three consecutive blocks (for example, 101 is unambiguously the result of one error to
111,) and now needs to send just 3k bits to transmit k bits of information.

There are more interesting codes than just these repetition codes: consider for example
the codeword table

word signal to transmit

000 000000
100 100011
010 010101
001 001110
011 011011
101 101101
110 110110
111 111000

In this code, we encode messages by breaking them into groups of three, and then replacing
each string of three with the corresponding group of six. For example, the message “010
101 111” would become

010101101101111000.

In this code, every word in the table above differs from any other word in at least three
spots (check this!) Therefore, if we have at most 1 error in any six consecutive bits, we
would never confuse a word here with any other word: changing at most one bit in any
block of six would still make it completely unambiguous what word we started with.

Therefore, if we sent the string that we described above, and people on Earth received

010111101111110000,
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they would first break it into groups of six

010111101111110000,

and then look through our codeword table for what words these strings of six could possibly
be, if at most one error in every six consecutive bits could occur:

010101101101111000.

This then decodes to “010 101 111,” the message we sent.
This code can correct for at most one error in any six consecutive bits (worse than our

earlier code,) but does so much more efficiently: it only needs to send 2k bits to transmit
a signal with k bits of information in it.

So: suppose we know ahead of time the maximum number of errors in any consecutive
string of symbols. What is the most efficient code we can make to transmit our signals?

At this time, it makes sense to try to formalize these notions of “maximum number of
errors” and “efficiency.” Here are a series of definitions, that formalize the words and ideas
we’ve been playing with in this talk:

Definition. A q-ary block code C of length n is a collection C of words of length n, written
in base q. In other words, C is just a subset of (Z/qZ)n.

Example. The “repeat three times” code we described earlier is a 2-ary code of length 3,
consisting of the two elements {(000), (111)}. We used it to encode a language with two
symbols, specifically 0 and 1.

The second code we made is a 2-ary code of length 6, consisting of the 8 elements we
wrote down in our table.

Definition. Given a q-ary code C of length n, we define its information rate as the
quantity

logq(# of elements in C)

n

This, roughly speaking, captures the idea of how “efficient” a code is.

Example. The “repeat three times” code we described earlier contains two codewords of
length 3; therefore, its information rate is

log2(2)

3
=

1

3
.

This captures the idea that this code needed to transmit three bits to send any one bit of
information.

Similarly, the second code we made contains 8 codewords of length six, and therefore
has information rate

log2(8)

6
=

3

6
=

1

2
.

Again, this captures the idea that this code needed to transmit two bits in order to send
any one bit of information.
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Definition. The Hamming distance dH(x,y) between any two elements x,y of (Z/qZ)n

is simply the number of places where these two elements disagree.
Given a code C, we say that the minimum distance of C, d(C), is the smallest possible

value of dH(x,y) taken over all distinct x,y within the code. If d(C) ≥ k, we will call such
a code a distance-k code.

Example. The Hamming distance between the two words

12213, 13211

is 2, because they disagree in precisely two places. Similarly, the Hamming distance between
the two words

TOMATO,POTATO

is 2, because these two words again disagree in precisely two places.
The “repeat three times” code from earlier has minimum distance 3, because the Ham-

ming distance between 000 and 111 is 3.
Similarly, the second code we described from earlier has minimum distance 3, because

every two words in our list disagreed in at least 3 places.

The following theorem explains why we care about this concept of distance:

Theorem. A code C can detect up to s errors in any received codeword as long as d(C) ≥
s+ 1. Similarly, a code C can correct up to t errors in any received codeword to the correct
codeword as long as d(C) ≥ 2t+ 1.

Proof. If d(C) ≥ s+ 1, then making s changes to any codeword cannot change it into any
other codeword, as every pair of codewords differ in at least s + 1 places. Therefore, our
code will detect an error as long as at most s changes occur in any codeword.

Similarly, if d(C) ≥ 2t + 1, then changing t entries in any codeword still means that it
differs from any other codeword in at least t + 1 many places; therefore, the codeword we
started from is completely unambiguous, and we can correct these errors.

Example. Using this theorem, we can see that both of our codewords can correct at most
one error in any codeword, because their Hamming distances were both three.

Now that we’ve made this formal, we can now state our question rigorously:

Problem. Suppose that you are given a base q, a block length n for your codewords, and
a minimum distance d that you want your codewords to be from each other (because you
want to be able to correct up to d(d− 1)/2e many errors in any codeword, for example.)

What is the maximum size of C — in other words, what is the maximum information
rate you can get a code to have with these parameters?

Amazingly enough, this problem is wide open for tons of values! We really know
very little about these maximum values: for example, when n = 21, q = 2, d = 10 this
question is still open (the number of elements in C is between 42 and 47, according to
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http://www.win.tue.nl/ aeb/codes/binary-1.html. For general information on what we
know and do not know, check out http://www.codetables.de/!)

So: we have a mathematical object that on one hand seems incredibly practical (almost
all modern electronical objects need some automated way to correct for errors) and also
shockingly open (we don’t know what the most efficient codes are for even very small block
lengths n and distances d!) This, for me, is the sign of an exciting area of research: we both
know nothing and want to be able to know everything!

To start our studies, though, we need to shore up our fundamentals. To study codes,
we need to study the basic elements codes are made out of: codewords, i.e. elements of
(Z/qZ)n! Perhaps unsurprisingly, these sets are full of rich structure in their own right;
they form vector spaces, our topic of study for the next few classes!

2 Vector Spaces, Informally

(This section is duplicated from last quarter’s Introduction to Proof notes; so, if you were
OK with vector spaces back then, this should be OK here as well!) The two vector spaces
you’re probably the most used to working with, from either your previous linear algebra
classes or even your earliest geometry/precalc classes, are the spaces R2 and R3. We briefly
review how these two vector spaces work here:

Definition. The vector space R2 consists of the collection of all pairs (a, b), where a, b are
allowed to be any pair of real numbers. For example, (2,−3), (2, π), (−1, 1), and (

√
2,
√

2)
are all examples of vectors in R2. We typically visualize these vectors as arrows in the
xy-plane, with the tail of the arrow starting at the origin1 and the tip of the arrow drawn at
the point in the plane with xy-coördinates given by the vector. We draw four such vectors
here:

x

y

(2,-3)

(2,π)

(-1,1) (√2,	√2)

Given a pair of vectors in R2, we can add them together. We do this component-wise,
i.e. if we have two vectors (a, b) and (c, d), their sum is the vector (a+c, b+d). For example,
the sum of the vectors (3,−2) and (2, 3) is the vector (5, 1).

1The origin is the point (0, 0) in the plane.
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You can visualize this by taking the arrow corresponding to the first vector that we add,
and “translating” this arrow over to the start of the second vector; if you travel along the
first vector and then continue along this second translated vector, you arrive at some point
in the plane. The arrow connecting the origin to this point is the vector given by the sum
of these two vectors! If this seems hard to understand, the diagram below may help some:

x

y

(3-2)

(2,3)

(2,3)+(3,-2)	=	(5,1)

We can also scale a vector in R2 by any real number a. Intuitively, this corresponds to
the concept of “stretching:” the vector (x, y) scaled by a, denoted a(x, y), is the quantity
(ax, ay). For example, 2(1, 3) = (2, 6), and is essentially what happens if we “double” the
vector (1, 3). We illustrate this below:

x

y

(1,3)

2(1,3)	=	(2,6)

We can define R3 in a similar fashion:

Definition. The vector space R3 consists of the collection of all pairs (a, b, c), where a, b, c
are allowed to be any triple of real numbers. For example, (0, 1, 2), (3, 0, 2), and (3, 2, 0)
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are all examples of vectors in R3. We typically visualize these vectors as arrows in three-
dimensional xyz-space, with the tail of the arrow starting at the origin and the tip of the
arrow drawn at the point in the plane with xyz-coördinates given by the vector. We draw
three such vectors here:

x y

z

(0,1,2)

(3,0,2)

(3,2,0)

Again, given a pair of vectors in R3, we can add them together. We do this component-
wise, i.e. if we have two vectors (a, b, c) and (d, e, f), their sum is the vector (a+d, b+e, c+f).
For example, the sum of the vectors (3,−2, 0) and (2, 1, 2) is the vector (5,−1, 2). We can
also scale a vector in R3 by any real number a: the vector (x, y, z) scaled by a, denoted
a(x, y, z), is the quantity (ax, ay, az). These operations can be visualized in a similar fashion
to the pictures we drew for R2:

x y

z

(-3,0,1)+(3,2,0)	

(-3,0,1)

(3,2,0)

=	(0,2,1)

=(4,0,2) (2,0,1)
2(2,0,1)	

You can generalize this discussion to Rn, the vector space made out of n-tuples of real
numbers: i.e. elements of R4 would be things like (π, 2, 2, 1) or (−1, 2, 1,−1). In fact, you
can generalize this entire process to any arbitrary field F :
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Definition. Take any set S. The n-fold Cartesian product of S with itself is the collection
of all ordered n-tuples of elements of S: that is,

Sn = {(s1, s2, . . . sn) | s1, s2, . . . sn ∈ S}

Suppose specifically that S is actually some field F (examples of fields we studied last
quarter: R,C,Q,Z/pZ whenever p is a prime, Fq for any prime power q via our equivalence-
relation constructions.) We can define the operation of vector addition + : Fn × Fn → Fn

on this set as follows: for any ~f = (f1, . . . fn), ~g = (g1, . . . gn) ∈ Fn, we can form

(f1, f2, . . . fn) + (g1, g2, . . . gn) := (f1 + g1, f2 + g2 + . . . fn + gn),

where the addition done on the right-hand side above is done using F ’s addition operation.
Similarly We can also define the operation of scalar multiplication · : F × Fn → Fn as
follows: for any ~f ∈ Fn, a ∈ F , we can form the vector

a(f1, f2, . . . fn) = (a · f1, a · f2, . . . a · fn),

where again the multiplication done on the right-hand side is done using F ’s multiplication
operation.

3 Vector Spaces, Formally

In general, there are many other kinds of vector spaces — essentially, anything with the
two operations “addition” and “scaling” is a vector space, provided that those operations
are well-behaved in certain specific ways. Much like we did with R and the field axioms, we
can generate a list of “properties” for a vector space that seem like characteristics that will
insure this “well-behaved” nature. We list a collection of such properties and use them to
define a vector space here:

Definition. A vector space V over a field F is a set V along with the two operations
addition and scalar multiplication, such that the following properties hold:

• Closure(+): ∀~v, ~w ∈ V, we have v +
w ∈ V .

• Identity(+): ∃~0 ∈ V such that ∀~v ∈
V , ~0 + ~v = ~v.

• Commutativity(+): ∀~v, ~w ∈ V,~v +
~w = ~w + ~v.

• Associativity(+): ∀~u,~v, ~w ∈ V, (~u +
~v) + ~w = ~u+ (~v + ~w).

• Inverses(+): ∀~v ∈ V,∃ some − ~v ∈
V such that ~v + (−~v) = 0.

• Closure(·): ∀a ∈ F,~v ∈ V, we have
a~v ∈ V .

• Identity(·): ∀~v ∈ V , we have 1~v = ~v.

• Compatibility(·): ∀a, b ∈ F , we have
a(b~v) = (a · b)~v.

• Distributivity(+, ·): ∀a ∈ F,~v, ~w ∈
V, a (~v + ~w) = a~v + a~w.

As with fields, there are certainly properties that Rn satisfies that are not listed above. For
example, consider the following property:
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• New property?(+): The additive identity, ~0, is unique in any vector space. In other
words, there cannot be two distinct vectors that are both the additive identity for a
given vector space.

Just like before, this property turns out to be redundant: in other words, this property
is implied by the definition of a vector space! We prove this here:

Claim. In any vector space, the additive identity is unique.

Proof. Take any two elements ~0, ~0′ that are both additive identities. Then, by definition,
we know that because ~0 is an additive identity, we have

~0′ = ~0 + ~0′.

Similarly, because ~0′ is an additive identity, we have

~0 = ~0′ +~0.

If we use commutativity to switch the ~0 and ~0′, we can combine these two equalities to get
that

~0 = ~0′ +~0 = ~0 + ~0′ = ~0′.

Therefore, we have shown that ~0 and ~0′ are equal. In other words, we’ve shown that all
of the elements that are additive identities are all equal: i.e. that they’re all the same
element! Therefore, this additive identity element is unique: there is no other element
that is somehow an additive identity that is different from ~0.

As we did with fields, there are a number of other properties that Rn possesses that you
can prove that any vector space must have: in your textbook, there are proofs that every
vector has a unique additive inverse, that 0~v is always ~0, that −1~v = −~v, and other such
things.

Instead of focusing on more of these proofs, we shift our attention instead to actually
describing some vector spaces!

A few of these are relatively simple to come up with:

• Rn, the example we used to come up with these properties, is a vector space over the
field R.

• Cn is similar. Specifically: Cn is the set of all n-tuples of complex numbers: i.e.

Cn = {(z1, . . . zn)|z1, . . . zn ∈ C}.

Just like with Rn, we can add these vectors together and scale them by arbitrary
complex numbers, while satisfying all of the vector space properties. We leave the
details for the reader to check, but this is a vector space over the complex numbers
C.
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• Similarly, Qn, the set of all n-tuples of rational numbers

Qn = {(q1, . . . qn)|q1, . . . qn ∈ Q},

is a vector space over the field Q.

• In general, given any field F , the set Fn along with the vector addition and scalar
multiplication operations defined earlier, is a vector space!

This is not hard to check:

– Closure(+): Immediate. Because F is a field and is closed under addition, the
pairwise sums performed in vector addition must create another vector.

– Identity(+): Because F is a field, it has an additive identity, 0. The vector
~0 = (0, 0, . . . 0) is consequently the additive identity for our vector space, as
pairwise adding this vector to any other vector does not change any of the other
vector’s coördinates.

– Commutativity(+): Again, this is a consequence of F being a vector space.
Because addition is commutative in F , the pairwise addition in our vector space
is commutative.

– Associativity(+): Once more, this is a consequence of F being a vector space.
Because addition is associative in F , the pairwise addition in our vector space is
associative.

– Inverses(+): Take any ~f = (f1, . . . fn) ∈ Fn. Because F is a field, we know
that (−f1, . . .− fn) is a vector in Fn as well. Furthermore, the pairwise addition
of these two vectors clearly yields the additive identity ~0; therefore, our vector
space has inverses.

– Closure(·): This is a consequence of F being closed under multiplication.

– Identity(·): Because F is a field, it has a multiplicative identity 1. This 1, when
used to scale a vector, does not change that vector at any coördinate because of
this multiplicative identity property; therefore 1 is also the scalar multiplicative
identity for our vector space.

– Compatibility(·): This is an immediate consequence from F ’s multiplication
being associative, as for any a, b ∈ F , we have

a(b(f1 . . . fn) =a(b · f1, . . . b · fn) = (a · (b · f1), . . . a · (b · fn))

=(a · b) · f1, . . . (a · b) · fn) = (a · b)(f1, . . . fn).

– Distributivity(+, ·): This is a consequence of F being a vector space. Because
multiplication and addition are distributive in F , their combination in our vector
space is distributive as well.

• A specific consequence of the above result is that something like (Z/5Z)n is a vector
space. This is a somewhat strange-looking beast: it’s a vector space over a finite-sized
field! In particular, it’s a vector space with only finitely many elements, which is
weird.
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To understand this better, we look at some examples. Consider (Z/5Z)2. This is the
vector space consisting of elements of the form

(a, b),

where a, b ∈ {0, 1, 2, 3, 4}. We add and scale elements in this vector space using mod-5
modular arithmetic: for example,

(2, 3) + (4, 4) = (1, 2),

because 2 + 4 ≡ 1 mod 5 and 3 + 4 ≡ 2 mod 5. Similarly,

2(3, 1) = (1, 2),

because 2 · 3 ≡ 1 mod 5 and 2 · 1 ≡ 2 mod 5.

Perhaps surprisingly, these odd-looking vector spaces are some of the most-commonly
used spaces in the theoretical computer science/cryptographic settings. In particu-
lar, they come up very often in the field of elliptic curve cryptography, as you may
remember from last quarter!

There are some odder examples of vector spaces:

• Polynomials! Specifically, let R[x] denote the collection of all finite-degree polynomials
in one variable x with real-valued coefficients. In other words,

R[x] = {a0 + a1x+ . . . anx
n|a0, . . . an ∈ R, n ∈ N}.

Verifying that this is a vector space is not very difficult:

– Closure(+): Adding two polynomials together clearly gives us another polyno-
mial.

– Identity(+): Adding 0 to any polynomial doesn’t change it, and 0 is a polyno-
mial itself (simply pick a0 = 0 and n = 0.)

– Commutativity(+): We can add polynomials in any order that we want, and
we’ll always get the same answer. (This is because addition in R is commutative,
and we just add polynomials by grouping common powers of x and adding their
real-valued coefficients together!)

– Associativity(+): Holds for the precise same reason that commutativity holds.

– Inverses(+): Given any polynomial a0 + . . . anx
n, the polynomial −a0 + . . . −

anx
n is its additive inverse, as summing these two polynomials gives us 0.

– Closure(·): Multiplying a polynomial by a real number clearly gives us another
polynomial.

– Identity(·): Multiplying a polynomial by 1 clearly gives us the same polynomial
back.

– Distributivity(+, ·): Holds for the precise same reason that commutativity
holds.
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• Matrices! Specifically, let MR(n, n) denote the set of n× n matrices with real-valued
entries. For example

MR(3, 3) =


a b c
d e f
g h i

 ∣∣∣∣∣∣ a, b, c, d, e, f, g, h, i ∈ R

 .

If we define matrix addition as simply entrywise addition: i.e.
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

 =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

an1 + bn1 an2 + bn2 . . . ann + bnn

 ,
and scalar multiplcation as simply entrywise multiplication, i.e.

c


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =


ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

can1 can2 . . . cann

 ,
then this is a vector space! Specifically, it’s a vector space for precisely the same
reasons that Rn is a vector space: if you just think of a n×n matrix as a very oddly-
written vector in Rn2

, then every argument for why Rn2
is a vector space carries over

to MR(n, n).

It might seem odd to think of matrices as a vector space, but if you go further in
physics or pure mathematics, this is an incredibly useful and common construction.
We leave the details of checking this is a vector space to the reader; it works just like
everything else we’ve done thus far!

4 Using Vector Spaces to Study Codes

Let’s return to error-correcting codes. Before, we mentioned that in general the following
problem was open for most values of n, q, d:

Question 1. Let Aq(n, d) denote the maximum number of elements in a block-length n
q-ary code C with d(C) ≥ d. What is Aq(n, d) for various values of q, n, d?

As we stated before, this problem is open for most values of n, q, d: to give examples,

2720 ≤ A2(16, 3) ≤ 3276,

are the best bounds currently known for these parameters, and in general A2(n, k) is open
for n ≥ 17, k ∈ {3, 4, 5, 6}.

Despite this, we can still find and determine lots of values for Aq(n, d)! Some, in fact,
are downright trivial:
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Theorem. Aq(n, 1) = qn, for any q, n.

Proof. First, notice that any code C has distance at least 1; this is by definition, as

d(C) = min
c1 6=c2∈C

d(c1, c2),

and the smallest distance between any two nonequal words c1, c2 is at least 1 (because if
they were distance 0, then they would be equal!)

Consequently, Aq(n, 1) is just asking us for the maximum number of elements in a q-ary
block-length n code, as the “distance 1” property is trivial to satisfy! Consequently, the
code with the maximum number of elements is simply the code given by taking all of the
possible code words: that is, it is the set (Z/qZ)n. This set has qn elements, as claimed; so
our proof is done!

It doesn’t take much more work to prove the following:

Theorem. Aq(n, n) = q, for any q, n.

Proof. First, notice that if we take the code
n zeroes︷ ︸︸ ︷

000 . . . 0,

n ones︷ ︸︸ ︷
111 . . . 1, . . .

n copies of (q−1) symbols︷ ︸︸ ︷
q − 1 . . . q − 1 ,

 ,

this code has q elements, all of which are distance n apart. So we have shown that Aq(n, n) ≥
q for any q, n.

So it suffices to prove that q is an upper bound for the size of any such code C, as
well! To do this: take any q-ary block-length n code C with d(C) ≥ n. Because C is a
block-length n code, it is impossible for any two words to disagree in more than n places
(as each word is length n); therefore, we can actually say that d(C) = n.

Suppose, for contradiction, that C has q + 1 or more words. Then, because there are q
choices of symbol for the first symbol in each of the words of C, and there are q+1 words in
total, there must be two words c1, c2 ∈ C that start with the same symbol. But this means
that d(c1, c2) ≤ n − 1, because they can disagree in at most n − 1 places; in other words
d(C) ≤ n− 1, a contradiction! Therefore, we have shown that |C| ≤ q, as claimed.

Working with other cases, however, gets harder in a hurry. Consider the following
problem:

Question 2. What is A2(n, 2) for arbitrary n?

Answer. We start answering this problem by gathering some data first. For n = 2, this is
a pretty simple problem; we’ve already shown above that A2(2, 2) = 2.

Let’s try n = 3 now. Assume without loss of generality2 that the all-zero codeword 000
is in our binary block-length-3 distance 2 code C. What else can we put in this code?

2You’ll prove that you can make this assumption in the homework!
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Well, we could add in 111, to get the code

{000, 111};

by inspection, we cannot add any more words to this code, as any other word would either
have one 1 (and thus be distance 1 from 000) or two 1’s (and thus be distance 1 from 111.)

Alternately, instead of adding in 111, we could add in the three words 011, 101, 110, to
get the code

{000, 011, 101, 110}.

This is a distance-2 code; all of the “two-1’s” words are distance 2 from 000, and also
distance 2 from each other (prove this if you don’t see why!) We cannot add any more
words to this code, as all remaining words have either one 1 or three 1’s, and in either case
are distance 1 from one of our “two 1’s” words.

By exhaustion, then, we seem to have shown that A2(3, 2) = 4. By using a similar
technique, we can see that it looks likely that A2(4, 2) = 8; if we start with the all-zero
string 0000 and add in the “two-1’s” words, we get

{0000, 0011, 0101, 0110, 1001, 1010, 1100},

to which we can also add the “four-1’s” word 1111 to get

{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.

We clearly cannot add more words to this code, as any other word would have either
one or three ones, and thus be within distance 1 of one of our existing codewords! Note
that we haven’t proven that this is the largest code possible; unlike our earlier work, we
haven’t considered other cases like adding in the “three-1’s” words instead of the “two-1’s”
words. You can try (check it!) using those codewords, and verify that the resulting code
is smaller than what we have here; however, it also seems likely that going through all of
the other ways to grow this code would be tedious, and not like a great method if we want
to generalize our results! Instead, we’ll stick with intuition for now; it “looks like” 8 is the
size of the largest code for n = 4, and hopefully we’ll come up with a proof of this later.

Similarly, you could study A2(5, 2). To continue the pattern, you’d want the all-zero
word 00000, all of the “two 1’s” words, of which there are

(
5
2

)
= 10 (because you have five

slots to put 1’s in, and you’re placing two 1’s,) and all of the “four 1’s” words, of which there
are

(
5
4

)
= 5 (same reasoning.) This gives us 1 + 10 + 5 = 16, which gives us an interesting

pattern: we have

A2(2, 2) A2(3, 2) A2(4, 2) A2(5, 2)

Guesses 2 4 8 16
,

which might point to a conjecture of A2(n, 2) = 2n−1!

With this data collected, we transition from our guesses above to some actual proofs:
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Theorem. A2(n, 2) = 2n−1.

Proof. As before, we prove this in two stages. First, we establish a lower bound of 2n−1

by giving a concrete example that shows this is possible. To do this, consider the binary
block-length n code C formed by taking all of the code words with an even number of 1’s.
I claim that this code has distance 2. To see why, consider any two words w1, w2 with
d(w1, w2) = 1. These two words disagree in exactly one place; so, outside of that one place,
they have the same number of 1’s, and at that place one is 1 and the other is 0. But
this means that one of w1, w2 has exactly one more 1 than the other; in other words, it is
impossible for both w1, w2 to have an even number of 1’s (as an even number ±1 is an odd
number!)

So, we have shown that C is a distance-2 block-length n binary code. How many
elements are in C? I claim that it is 2n−1, or in other words that half of the total number
of possible codewords3 (Z/2Z)n have an even number of 1’s, and prove this by induction on
n.

Our base case is immediate: if n = 1, then there is exactly one code word, 0, that has
an even number of 1’s. Inductively, suppose that half of the elements of (Z/2Z)n have an
even number of 1’s, and the other half have an odd number of 1’s. Look at the elements
of (Z/2Z)n+1, and divide them into two groups: those whose last element is a 0, and those
whose last element is a 1.

If you ignore the last element, then exactly half of the “last-element-zero” words have an
even number of 1’s, and half have an odd number of 1’s; similarly, exactly half of the “last-
element-one” words have an even number of 1’s, and half have an odd number of 1’s, by
induction! Therefore, by taking the even-number-1’s half from the last-element-zero words,
and the odd-number-1’s half from the “last-element-one” words, we have on one hand all
of the “total number of 1’s is even” numbers, and on the other hand half of the elements in
total from (Z/2Z)n+1! So we’ve proven our claim by induction, and therefore proved that
|C| is precisely half of |(Z/2Z)n| = 2n; i.e. |C| = 2n−1, as claimed.

This does the first half of our proof; that 2n−1 is a lower bound. We now seek to prove
that it is an upper bound, as well!

To see this, consider the concept of a graph:

Definition. A graph G with n vertices and m edges consists of the following two objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints.

Example. The following pair (V,E) defines a graph G on five vertices and five edges:

• V = {1, 2, 3, 4, 5},

• E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.
3Because there are 2n many words in (Z/2Z)n. Verify this if you forgot this proof from fall quarter!
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Something mathematicians like to do to quickly represent graphs is draw them, which we
can do by taking each vertex and assigining it a point in the plane, and taking each edge
and drawing a curve between the two vertices represented by that edge. For example, one
way to draw our graph G is the following:

However, this is not the only way to draw our graph! Another equally valid drawing is
presented here:

In general, all we care about for our graphs is their vertices and their edges; we don’t
usually care about how they are drawn, so long as they consist of the same vertices connected
via the same edges. Also, we usually will not care about how we “label” the vertices of a
graph: i.e. we will usually skip the labelings on our graphs, and just draw them as vertices
connected by edges.

Graphs are one of the most versatile mathematical objects; it is hard to think of a concept
of area of mathematics that cannot be described using the language of graph theory. When
describing graphs, some additional terminology is handy: we list a few terms here.

• Two vertices are called adjacent if there is an edge connecting them. For example,
vertices 1 and 2 are adjacent in the graph above, while vertices 1 and 3 are nonadjacent.

• Given a vertex v in a graph G = (V,E), we define the neighbors of v, denoted N(v),
as the collection of all vertices that are adjacent to v. For example, N(1) = {2, 5} in
the graph above.

• In a graph G = (V,E), we say that a vertex v ∈ V has degree k if N(v) contains k
elements. For example, the vertex 1 in the example above has degree 2.

Returining to our problem, let’s consider the following graph:

• Vertices: the set (Z/2Z)n.

• Edges: connect two words w1, w2 in our set with an edge if and only if d(w1, w2) = 1.

We draw a few examples of these graphs here:
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00

01

10

11

000

001

010

100

011

101

110

111

Notice that these graphs are precisely just n-dimensional cubes! This shouldn’t be too
surprising — after all, the vertices of the unit cube in n dimensions are precisely all of the
points in Rn whose coördinates are either 0 or 1 — but it’s pretty nonetheless.

What I want to consider instead, here, is what codes correspond to on these graphs. In
particular, suppose we take the graph above, and draw in the two distance-2 block-length-3
binary codes we came up with earlier:

000

001

010

100

011

101

110

111

000

001

010

100

011

101

110

111

{000,111} {000,011,101,110}

Notice how in both cases, we never had any edges connecting two codewords! If you think
about this for a moment, this makes sense: if two words are connected by an edge, then
they are distance 1 from each other, which would cause a problem for any code in which all
of our words are distance at least 2 from each other.

Also, notice that in the graph above, each vertex has degree n in the n-dimensional
cube! This is again not hard to see: if we have any word w in (Z/2Z)n, there are exactly n
words at distance 1 from w, as we get exactly one such word for each bit in w that we can
change.

By combining these observations, we can prove our claim! To do this, take any block-
length n distance-2 binary code C, and label it on the n-dimensional cube graphs above.
Redraw our graphs by “clumping together” all of the codewords into one cluster, and the
“non-codewords” into another cluster:

000 001

010

100

011

101

110 111

000

001
010
100
011
101
110

111

In the drawing above, the edges going from one cluster to the other are bolded, while the
edges within a cluster (where they exist; they exist on the LHS, but not on the RHS) are
dashed.
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If you look at the “codeword” cluster, you can immediately see that the total number
of edges connecting the codeword cluster to the non-codeword cluster is just

|C| · n;

this is because there are |C| vertices in the codeword cluster, each has n edges leaving it
by our earlier observation, and all of those edges must go to non-codewords (again, by our
earlier observations!)

Conversely, if you look at the “non-codeword” cluster and count edges there, you can
see that the total number of edges from it to the codeword cluster is at most

|{non-codewords}| · n,

because (again) each vertex has degree n! Notice that this time we don’t know the exact
number of edges going from non-codewords to codewords; not every edge from a non-
codeword needs to go to a codeword, as our examples above demonstrate! However, we
know that there are at most as many edges from non-codewords to codewords as our
bound above,

Finally: we know that these two quantities are equal, because the edges that leave our
codewords must go into the non-codewords, and vice-versa! Therefore, we have

|C| · n ≤ |{non-codewords}| · n;

in other words,

|C|leq|{non-codewords}|.

But this means that there must be at least as many non-codewords as codewords; in other
words, that C can contain at most half of the elements of (Z/2Z)n! In other words, we’ve
proven that A2(n, 2) ≤ 2n−1, which finishes the second part of our proof!

. . . so. You may have noticed that while we used the notation for vector spaces in places
here, we didn’t really use the structure of a vector space yet! We do this in the next week’s
notes; check them out when they go up!
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