
CCS Discrete II Professor: Padraic Bartlett

Lecture 2: Vector Spaces, Metric Spaces

Week 2 UCSB 2015

1 Vector Spaces, Informally

The two vector spaces1 you’re probably the most used to working with, from either your
previous linear algebra classes or even your earliest geometry/precalc classes, are the spaces
R2 and R3. We briefly review how these two vector spaces work here:

Definition. The vector space R2 consists of the collection of all pairs (a, b), where a, b are
allowed to be any pair of real numbers. For example, (2,−3), (2, π), (−1, 1), and (

√
2,
√

2)
are all examples of vectors in R2. We typically visualize these vectors as arrows in the
xy-plane, with the tail of the arrow starting at the origin2 and the tip of the arrow drawn at
the point in the plane with xy-coördinates given by the vector. We draw four such vectors
here:

x

y

(2,-3)

(2,π)

(-1,1) (√2,	√2)

Given a pair of vectors in R2, we can add them together. We do this component-wise,
i.e. if we have two vectors (a, b) and (c, d), their sum is the vector (a+c, b+d). For example,
the sum of the vectors (3,−2) and (2, 3) is the vector (5, 1).

You can visualize this by taking the arrow corresponding to the first vector that we add,
and “translating” this arrow over to the start of the second vector; if you travel along the
first vector and then continue along this second translated vector, you arrive at some point
in the plane. The arrow connecting the origin to this point is the vector given by the sum
of these two vectors! If this seems hard to understand, the diagram below may help some:

1This section is duplicated from last quarter’s Introduction to Proof notes; so, if you were OK with vector
spaces back then, this should be OK here as well! Feel free to skip to the next section, which discusses metric
spaces.

2The origin is the point (0, 0) in the plane.

1

x

y

(3-2)

(2,3)

(2,3)+(3,-2)	=	(5,1)

We can also scale a vector in R2 by any real number a. Intuitively, this corresponds to
the concept of “stretching:” the vector (x, y) scaled by a, denoted a(x, y), is the quantity
(ax, ay). For example, 2(1, 3) = (2, 6), and is essentially what happens if we “double” the
vector (1, 3). We illustrate this below:

x

y

(1,3)

2(1,3)	=	(2,6)

We can define R3 in a similar fashion:

Definition. The vector space R3 consists of the collection of all pairs (a, b, c), where a, b, c
are allowed to be any triple of real numbers. For example, (0, 1, 2), (3, 0, 2), and (3, 2, 0)
are all examples of vectors in R3. We typically visualize these vectors as arrows in three-
dimensional xyz-space, with the tail of the arrow starting at the origin and the tip of the
arrow drawn at the point in the plane with xyz-coördinates given by the vector. We draw
three such vectors here:

2

x y

z

(0,1,2)

(3,0,2)

(3,2,0)

Again, given a pair of vectors in R3, we can add them together. We do this component-
wise, i.e. if we have two vectors (a, b, c) and (d, e, f), their sum is the vector (a+d, b+e, c+f).
For example, the sum of the vectors (3,−2, 0) and (2, 1, 2) is the vector (5,−1, 2). We can
also scale a vector in R3 by any real number a: the vector (x, y, z) scaled by a, denoted
a(x, y, z), is the quantity (ax, ay, az). These operations can be visualized in a similar fashion
to the pictures we drew for R2:

x y

z

(-3,0,1)+(3,2,0)	

(-3,0,1)

(3,2,0)

=	(0,2,1)

=(4,0,2) (2,0,1)
2(2,0,1)	

You can generalize this discussion to Rn, the vector space made out of n-tuples of real
numbers: i.e. elements of R4 would be things like (π, 2, 2, 1) or (−1, 2, 1,−1). In fact, you
can generalize this entire process to any arbitrary field F :

Definition. Take any set S. The n-fold Cartesian product of S with itself is the collection
of all ordered n-tuples of elements of S: that is,

Sn = {(s1, s2, . . . sn) | s1, s2, . . . sn ∈ S}

3

Suppose specifically that S is actually some field F (examples of fields we studied last
quarter: R,C,Q,Z/pZ whenever p is a prime, Fq for any prime power q via our equivalence-
relation constructions.) We can define the operation of vector addition + : Fn × Fn → Fn

on this set as follows: for any ~f = (f1, . . . fn), ~g = (g1, . . . gn) ∈ Fn, we can form

(f1, f2, . . . fn) + (g1, g2, . . . gn) := (f1 + g1, f2 + g2 + . . . fn + gn),

where the addition done on the right-hand side above is done using F ’s addition operation.
Similarly We can also define the operation of scalar multiplication · : F × Fn → Fn as
follows: for any ~f ∈ Fn, a ∈ F , we can form the vector

a(f1, f2, . . . fn) = (a · f1, a · f2, . . . a · fn),

where again the multiplication done on the right-hand side is done using F ’s multiplication
operation.

2 Vector Spaces, Formally

In general, there are many other kinds of vector spaces — essentially, anything with the
two operations “addition” and “scaling” is a vector space, provided that those operations
are well-behaved in certain specific ways. Much like we did with R and the field axioms, we
can generate a list of “properties” for a vector space that seem like characteristics that will
insure this “well-behaved” nature. We list a collection of such properties and use them to
define a vector space here:

Definition. A vector space V over a field F is a set V along with the two operations
addition and scalar multiplication, such that the following properties hold:

• Closure(+): ∀~v, ~w ∈ V, we have v +
w ∈ V .

• Identity(+): ∃~0 ∈ V such that ∀~v ∈
V , ~0 + ~v = ~v.

• Commutativity(+): ∀~v, ~w ∈ V,~v +
~w = ~w + ~v.

• Associativity(+): ∀~u,~v, ~w ∈ V, (~u +
~v) + ~w = ~u+ (~v + ~w).

• Inverses(+): ∀~v ∈ V,∃ some − ~v ∈
V such that ~v + (−~v) = 0.

• Closure(·): ∀a ∈ F,~v ∈ V, we have
a~v ∈ V .

• Identity(·): ∀~v ∈ V , we have 1~v = ~v.

• Compatibility(·): ∀a, b ∈ F , we have
a(b~v) = (a · b)~v.

• Distributivity(+, ·): ∀a ∈ F,~v, ~w ∈
V, a (~v + ~w) = a~v + a~w.

As with fields, there are certainly properties that Rn satisfies that are not listed above. For
example, consider the following property:

• New property?(+): The additive identity, ~0, is unique in any vector space. In other
words, there cannot be two distinct vectors that are both the additive identity for a
given vector space.

4

Just like before, this property turns out to be redundant: in other words, this property
is implied by the definition of a vector space! We prove this here:

Claim. In any vector space, the additive identity is unique.

Proof. Take any two elements ~0, ~0′ that are both additive identities. Then, by definition,
we know that because ~0 is an additive identity, we have

~0′ = ~0 + ~0′.

Similarly, because ~0′ is an additive identity, we have

~0 = ~0′ +~0.

If we use commutativity to switch the ~0 and ~0′, we can combine these two equalities to get
that

~0 = ~0′ +~0 = ~0 + ~0′ = ~0′.

Therefore, we have shown that ~0 and ~0′ are equal. In other words, we’ve shown that all
of the elements that are additive identities are all equal: i.e. that they’re all the same
element! Therefore, this additive identity element is unique: there is no other element
that is somehow an additive identity that is different from ~0.

As we did with fields, there are a number of other properties that Rn possesses that you
can prove that any vector space must have: in your textbook, there are proofs that every
vector has a unique additive inverse, that 0~v is always ~0, that −1~v = −~v, and other such
things.

Instead of focusing on more of these proofs, we shift our attention instead to actually
describing some vector spaces!

A few of these are relatively simple to come up with:

• Rn, the example we used to come up with these properties, is a vector space over the
field R.

• Cn is similar. Specifically: Cn is the set of all n-tuples of complex numbers: i.e.

Cn = {(z1, . . . zn)|z1, . . . zn ∈ C}.

Just like with Rn, we can add these vectors together and scale them by arbitrary
complex numbers, while satisfying all of the vector space properties. We leave the
details for the reader to check, but this is a vector space over the complex numbers
C.

• Similarly, Qn, the set of all n-tuples of rational numbers

Qn = {(q1, . . . qn)|q1, . . . qn ∈ Q},

is a vector space over the field Q.

5

• In general, given any field F , the set Fn along with the vector addition and scalar
multiplication operations defined earlier, is a vector space!

This is not hard to check:

– Closure(+): Immediate. Because F is a field and is closed under addition, the
pairwise sums performed in vector addition must create another vector.

– Identity(+): Because F is a field, it has an additive identity, 0. The vector
~0 = (0, 0, . . . 0) is consequently the additive identity for our vector space, as
pairwise adding this vector to any other vector does not change any of the other
vector’s coördinates.

– Commutativity(+): Again, this is a consequence of F being a vector space.
Because addition is commutative in F , the pairwise addition in our vector space
is commutative.

– Associativity(+): Once more, this is a consequence of F being a vector space.
Because addition is associative in F , the pairwise addition in our vector space is
associative.

– Inverses(+): Take any ~f = (f1, . . . fn) ∈ Fn. Because F is a field, we know
that (−f1, . . .− fn) is a vector in Fn as well. Furthermore, the pairwise addition
of these two vectors clearly yields the additive identity ~0; therefore, our vector
space has inverses.

– Closure(·): This is a consequence of F being closed under multiplication.

– Identity(·): Because F is a field, it has a multiplicative identity 1. This 1, when
used to scale a vector, does not change that vector at any coördinate because of
this multiplicative identity property; therefore 1 is also the scalar multiplicative
identity for our vector space.

– Compatibility(·): This is an immediate consequence from F ’s multiplication
being associative, as for any a, b ∈ F , we have

a(b(f1 . . . fn) =a(b · f1, . . . b · fn) = (a · (b · f1), . . . a · (b · fn))

=(a · b) · f1, . . . (a · b) · fn) = (a · b)(f1, . . . fn).

– Distributivity(+, ·): This is a consequence of F being a vector space. Because
multiplication and addition are distributive in F , their combination in our vector
space is distributive as well.

• A specific consequence of the above result is that something like (Z/5Z)n is a vector
space. This is a somewhat strange-looking beast: it’s a vector space over a finite-sized
field! In particular, it’s a vector space with only finitely many elements, which is
weird.

To understand this better, we look at some examples. Consider (Z/5Z)2. This is the
vector space consisting of elements of the form

(a, b),

6

where a, b ∈ {0, 1, 2, 3, 4}. We add and scale elements in this vector space using mod-5
modular arithmetic: for example,

(2, 3) + (4, 4) = (1, 2),

because 2 + 4 ≡ 1 mod 5 and 3 + 4 ≡ 2 mod 5. Similarly,

2(3, 1) = (1, 2),

because 2 · 3 ≡ 1 mod 5 and 2 · 1 ≡ 2 mod 5.

Perhaps surprisingly, these odd-looking vector spaces are some of the most-commonly
used spaces in the theoretical computer science/cryptographic settings. In particu-
lar, they come up very often in the field of elliptic curve cryptography, as you may
remember from last quarter!

There are some odder examples of vector spaces:

• Polynomials! Specifically, let R[x] denote the collection of all finite-degree polynomials
in one variable x with real-valued coefficients. In other words,

R[x] = {a0 + a1x+ . . . anx
n|a0, . . . an ∈ R, n ∈ N}.

Verifying that this is a vector space is not very difficult:

– Closure(+): Adding two polynomials together clearly gives us another polyno-
mial.

– Identity(+): Adding 0 to any polynomial doesn’t change it, and 0 is a polyno-
mial itself (simply pick a0 = 0 and n = 0.)

– Commutativity(+): We can add polynomials in any order that we want, and
we’ll always get the same answer. (This is because addition in R is commutative,
and we just add polynomials by grouping common powers of x and adding their
real-valued coefficients together!)

– Associativity(+): Holds for the precise same reason that commutativity holds.

– Inverses(+): Given any polynomial a0 + . . . anx
n, the polynomial −a0 + . . . −

anx
n is its additive inverse, as summing these two polynomials gives us 0.

– Closure(·): Multiplying a polynomial by a real number clearly gives us another
polynomial.

– Identity(·): Multiplying a polynomial by 1 clearly gives us the same polynomial
back.

– Distributivity(+, ·): Holds for the precise same reason that commutativity
holds.

• Matrices! Specifically, let MR(n, n) denote the set of n× n matrices with real-valued
entries. For example

MR(3, 3) =

a b c
d e f
g h i

 ∣∣∣∣∣∣ a, b, c, d, e, f, g, h, i ∈ R

 .

7

http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

If we define matrix addition as simply entrywise addition: i.e.
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

+

b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

 =

a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

an1 + bn1 an2 + bn2 . . . ann + bnn

 ,
and scalar multiplcation as simply entrywise multiplication, i.e.

c

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =

ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

can1 can2 . . . cann

 ,
then this is a vector space! Specifically, it’s a vector space for precisely the same
reasons that Rn is a vector space: if you just think of a n×n matrix as a very oddly-
written vector in Rn2

, then every argument for why Rn2
is a vector space carries over

to MR(n, n).

It might seem odd to think of matrices as a vector space, but if you go further in
physics or pure mathematics, this is an incredibly useful and common construction.
We leave the details of checking this is a vector space to the reader, but the proof
works just like everything else we’ve done thus far!

In our last lecture, the notation of “vector spaces” is not the only object we used when
studying/creating error-correcting codes. We also needed to use the concept of distance
when studying our codes; however, when we did this, we used a very strange notion of
distance (the Hamming distance) instead of the normal notion of distance that we have
from Rn.

This raises a natural question: what other notions of distance exist? Are there any
properties common to all notions of distance? We study these questions here.

3 Metric Spaces

Definition. Take any set S. A metric on S is any function d : S × S → R such that the
following four properties hold:

1. Identity of indiscernible values3: For any x ∈ S, we have d(x, x) = 0.

2. Positivity: For any two distinct x, y ∈ S, we have d(x, y) > 0.

3. Symmetry: For any x, y ∈ S, we have d(x, y) = d(y, x).

4. Triangle inequality: For any x, y, z ∈ S, we have d(x, z) ≤ d(x, y) + d(y, z).

3No one uses this term.

8

The Euclidean distance is probably the first metric you encountered in your life. To
be rigorous, we define the Euclidean distance on Rn between any two vectors ~x, ~y by

d(~x, ~y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2.

We start by rigorously showing that this is a metric:

Claim. The Euclidean distance is a metric on Rn.

Proof. We check properties one-by-one.
Identity of indiscernible values: Take any ~x ∈ Rn. Then, by definition, we have

d(~x, ~x) =
√

(x1 − x1)2 + . . .+ (xn − xn)2 =
√

0 + . . .+ 0 = 0,

as claimed.
Positivity: Take any two distinct ~x, ~y ∈ Rn. Because ~x 6= ~y by assumption, there must

be some coördinate k such that xk 6= yk. Consequently, because (xi − yi)2 is a square and
thus no smaller than 0 for any i, we have

√
(x1 − y1)2 + . . .+ (xn − yn)2 ≥

√
0 + . . .+ 0 + (xk − yk)2 + 0 + . . .+ 0

= |xk − yk|
> 0,

which proves our claim.
Symmetry: Take any two ~x, ~y ∈ Rn. Then, we have that

d(~x, ~y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2

=
√

(y1 − x1)2 + . . .+ (yn − xn)2

= d(~y, ~x).

Triangle inequality. This proof turns out to be a bit of a pain, which is why we
skipped it in class: but if you’re curious, read on!

We start by establishing the Cauchy-Schwarz inequality, which (for Rn) states that for
any two vectors ~x, ~y we have ∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

x2i ·

√√√√ n∑
i=1

y2i .

This is a little messy, but not too hard to show. Because the LHS and RHS above are
both positive, we can square both sides above and get an equivalent expression:(

n∑
i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)
·

(
n∑

i=1

y2i

)
.

9

To prove that this expression works, consider the following algebraic expression, chosen
cleverly to relate to both the RHS and LHS:

n∑
i=1

 n∑
j=1

(xiyj − xjyi)2
 .

We can expand this as follows:

n∑
i=1

 n∑
j=1

(xiyj − xjyi)2
 =

n∑
i=1

 n∑
j=1

x2i y
2
j + x2jy

2
i − 2xixjyiyj

=

 n∑
i=1

n∑
j=1

x2i y
2
j

+

 n∑
i=1

n∑
j=1

x2jy
2
i

− 2

 n∑
i=1

n∑
j=1

xixjyiyj

= 2

 n∑
i=1

n∑
j=1

x2i y
2
j

− 2

 n∑
i=1

xiyi ·

 n∑
j=1

xjyj

= 2

 n∑
i=1

x2i

n∑
j=1

y2j

− 2

 n∑
i=1

xiyi ·

 n∑
j=1

xjyj

= 2

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
− 2

(
n∑

i=1

xiyi

) n∑
j=1

xjyj

= 2

(
n∑

i=1

x2i

)
·

(
n∑

i=1

y2i

)
− 2

(
n∑

i=1

xiyi

)2

.

We know that the LHS here is a positive number, as it is the sum of many squared real
numbers. Consequently, the RHS is also positive; in other words, we must have

(
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)
·

(
n∑

i=1

y2i

)
.

Taking square roots gives us ∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

x2i ·

√√√√ n∑
i=1

y2i .

as claimed.
Notationally, people usually simplify this by letting ||~x|| =

√
x21 + . . . x2n, i.e. ||~x|| de-

notes the distance from ~0 to the point ~x. If you use this above, our inequality simplifies
to ∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤ ||~x|| · ||~y||.
We can use the Cauchy-Schwarz inequality to prove the following useful lemma:

10

Lemma. Take any two vectors ~x, ~y ∈ Rn. Then ||~x+ ~y|| ≤ ||~x||+ ~y||.

Proof. We just do some algebraic manipulations, and use Cauchy-Schwarz:

||~x+ ~y||2 =
(√

(x1 + y1)2 + . . .+ (xn + yn)2
)2

= (x1 + y1)
2 + . . .+ (xn + yn)2

=

(
n∑

i=1

x2i

)
+

(
n∑

i=1

y2i

)
+ 2

(
n∑

i=1

xiyi

)

= ||~x||2 + ||~y||2 + 2

(
n∑

i=1

xiyi

)
≤ ||~x||2 + ||~y||2 + 2||~x|| · ||~y||

= (||~x||+ ||~y||)2

Taking square roots proves our claim!

With this lemma, we can prove the Cauchy-Schwarz inequality. Take any three ~x, ~y, ~z ∈
Rn. We want to prove that d(~x, ~z) ≤ d(~x, ~y) + d(~y, ~z).

To do this, simply notice that

d(~x, ~z) =
(√

(x1 − z1)2 + . . .+ (xn − zn)2
)

= ||~x− ~z||
= ||~x− ~y + ~y − ~z||
≤ ||~x− ~y||+ ||~y − ~z||
= d(~x, ~y) + d(~y, ~z).

Success! (In your analysis classes you’ll probably do this in class. Let me know when
you do?)

This is not the only metric that people use! Another useful metric is the taxicab
metric, defined below:

Definition. The taxicab metric on Rn is defined as follows: for any ~x, ~y ∈ Rn, we have

d(~x, ~y) =

n∑
i=1

|xi − yi|

The idea with this metric is that if you’re in a large city and need to drive someone from
one point to the other, if your city is set up with a grid system, you can only move along
one coördinate at a time! So, for example, to go one mile north and one mile east in a city
like Chicago, you’d likely have to drive two miles (one north and one east) rather than

√
2

miles northeast, because that diagonal road probably doesn’t exist.

This, too, is a metric:

Claim. The taxicab metric is a metric on Rn.

11

Proof. Identity of indiscernible values: Take any ~x ∈ Rn. Then, by definition, we have

d(~x, ~x) =
n∑

i=1

|xi − xi| =
n∑

i=1

0 = 0,

as claimed.
Positivity: Take any two distinct ~x, ~y ∈ Rn. Because ~x 6= ~y by assumption, there must

be some coördinate k such that xk 6= yk. Consequently, because |xi − yi| > 0 by definition,
we have

n∑
i=1

|xi − yi| ≥ |xi − yi| > 0,

which proves our claim.
Symmetry: Take any two ~x, ~y ∈ Rn. Then, we have that

d(~x, ~y) =

n∑
i=1

|xi − yi| =
n∑

i=1

|yi − xi| = d(~y, ~x),

which proves our claim.
Triangle inequality: Take any three ~x, ~y, ~z ∈ Rn. We prove the triangle inequality

here by appealing to the Euclidean metric, which is equal 4to the taxicab metric on R1.
Simply note that

d(~x, ~y) + d(~y, ~z) =

n∑
i=1

|xi − yi|+
n∑

i=1

|yi − zi|

=

n∑
i=1

(|xi − yi|+ |yi − zi|)

≥
n∑

i=1

|xi − yi + yi − zi|, by Euclidean triangle ineq. for each coordinate

=

n∑
i=1

|xi − zi|

= d(~x, ~z).

So we’ve proven our claim!

A third useful metric is the maximum norm:

Definition. The maximum norm on Rn is defined as follows: for any ~x, ~y ∈ Rn, we have

d(~x, ~y) = max
1≤i≤n

|xi − yi|

4 Proof of this claim: when n = 1, dEuclidean(x, y) =
√

(x− y)2 = |x− y| = dtaxicab(x, y).

12

This is a metric as well:

Claim. The taxicab metric is a metric on Rn.

Proof. Like before, the positivity/identity of indiscernible values/symmetry properties all
fall out from the definition, leaving only the triangle inequality as the interesting case to
check.

We do this here. Take any three ~x, ~y, ~z ∈ Rn. Suppose that j is the coördinate at which
~x, ~z have the greatest difference; then we must have d(~x, ~z) = |xj − zj |. By again using the
one-dimensional Euclidean norm, we can see that this is no greater than |xj−yj |+ |yj−zj |;

in turn, we can see that this sum is no greater than the maximums

(
max
1≤i≤n

|xi − yi|
)

+(
max
1≤i≤n

|yi − zi|
)

. But this is just d(~x, ~y) + d(~y, ~z); so we’ve proven our claim!

We give one last example of a metric on Rn here, called the “post office” metric:

Definition. The post office metric on Rn is defined as follows:

• For any ~x ∈ Rn, we have d(~x, ~x) = 0.

• For any ~x 6= ~y ∈ Rn, we have d(~x, ~y) = ||~x||+ ||~y||. (If you haven’t seen this notation
before, ||~x|| denotes the quantity

√
x21 + . . . x2n.)

The idea with this metric is that if you want to mail a package from some location ~x to
another location ~y, you often have to route it through some central packing location (in
this case, ~0.)

On the homework, you are asked to prove that this is a metric!
All of the metrics above are defined on Rn. This is not always the case; indeed, many

metrics are defined on other sets! The discrete metric is a useful example of a metric that
can be applied to any set:

Definition. Take any set S. The discrete metric on S is defined as follows:

• For any s ∈ S, we have d(s, s) = 0.

• For any s 6= t ∈ S, we have d(s, t) = d(t, s) = 1.

This is a metric, as we show here:

Claim. The discrete metric is a metric on any set S.

Proof. As before, our metric satisfies the positivity/identity of indiscernible values/symmetry
properties by definition; so it suffices to check the triangle inequality. Take any three
r, s, t ∈ S; we want to show that

d(r, t) ≤ d(r, s) + d(s, t).

This is not hard to do via casework. If r = t, then the LHS above is 0, and we are done
because our function is nonnegative. Alternately, if r 6= t, then the LHS is 1. Consider
possible values of s; because r 6= t, s can be equal to at most one of r, t. Consequently, at
least one term on the RHS is 1 as well, and thus by nonnegativity our inequality holds.

13

Finally, we should mention the notion of distance that set up this entire discussion: the
Hamming distance, which we defined on codewords in (Z/qZ)n! As it turns out, this too
is a metric:

Claim. The Hamming distance is a metric on (Z/qZ)n.

Proof. We first restate the Hamming distance, in case you’ve forgotten the definition:

Definition. Take any two words ~v = (v1, . . . vn), ~w = (w1, . . . wn) from (Z/qZ)n. The
Hamming distance between ~v, ~w, denoted d(~v, ~w), is the number of places at which these
two words disagree. To be formal, define χ : (Z/qZ)2 → {0, 1} by χ(a, b) = 1 if and only if

a 6= b, and 0 otherwise. Then d(~v, ~w) is just the sum
n∑

i=1

χ(vi, wi).

With this restated, we can once again see that our definition trivially satisfies the positiv-
ity/identity of indiscernible values/symmetry properties! So, as before, the only interesting
property to verify is the triangle inequality.

Take any three words ~u,~v, ~w from (Z/qZ)n. Suppose that d(~u,~v) is equal to some k; then
by definition, we can turn ~u into ~v by changing exactly k of its entries. Similarly, suppose
that d(~v, ~w) is equal to some l; then by definition, we can turn ~v into ~w by changing exactly
l of its entries.

Consequently, we can turn ~u into ~w by changing at most k+l of the entries in ~u. But this
means that ~u, ~w must agree on all but at least k+ l places if we only need to change at most
k+l places to turn ~u into ~w! In other words, we must have d(~u, ~w ≤ k+l = d(~u,~v)+d(~v, ~w),
as claimed.

4 Using Metrics to Visualize Codes

The main reason we talk about metrics here is because they give us excellent ways to
visualize codes in space. To make this concrete, consider the following definition and claim:

Definition. Take any set S with a metric d : S × S → R defined on it. Take any point
x ∈ S and any radius r ∈ R. We define the ball of radius r around the point x with respect
to the metric d as the following set:

Br(x) = {y ∈ S | d(x, y) ≤ r}.

Claim. Take any block-length n q-ary code C. The following two properties are equivalent:

1. The collection of balls {Bk(~c) | ~c ∈ C} are all disjoint.

2. d(C) ≥ 2k + 1.

Proof. As this is an equivalence claim, we must prove both directions.
(1⇒ 2): Take any k such that the collection of balls

{Bk(~c) | ~c ∈ C}

14

are all disjoint. Consider any two codewords ~c1, ~c2 ∈ C. If d(~c1, ~c2) ≤ 2k, then the two balls
of radius k centered around ~c1, ~c2 would overlap. To be specific, our balls will overlap at any
word ~w formed by taking the first k places at which ~c1 disagrees with ~c2 and changing those
entries to ~c2’s entries, as this word is (by construction) distance k from ~c1, and distance
d(~c1, ~c2)− k ≤ 2k − k = k from ~c2.

So this cannot happen! In other words, any two codewords in our code must be distance
at least 2k + 1 apart; that is, d(C) ≥ 2k + 1.

(2⇒ 1): We basically reverse all of the above steps. Take any code C with d(C) ≥ 2k+1,
and any two codewords ~c1, ~c2 ∈ C. If the two balls Bk(~c1), Bk(~c2) were to intersect, then
by the logic above our two codewords would be distance at most 2k from each other, a
contradiction to our assumption! So these balls must not intersect, as claimed.

In this sense, finding “good” codes — i.e. codes with d(C)) ≥ 2k+1 for some set k, with
as many elements as possible — is equivalent to the task of packing (Z/qZ)n with balls of
radius k! This gives us a nice visualization for what “good” codes look like: ways to place
balls in space!

15

	Vector Spaces, Informally
	Vector Spaces, Formally
	Metric Spaces
	Using Metrics to Visualize Codes

