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1 Discrete Dynamical Systems

In many branches of mathematics, we typically consider individual objects — the set of all
prime numbers, the functions sin(z) and cos(z), a trefoil knot, the unit sphere in R3 —
as if they are fixed, i.e. static or unchanging. This is often a useful abstraction to make,
in that these objects are often difficult enough on their own; there is lots of interesting
mathematics that we can do with a fixed knot in space without having to worry about it
moving around! So we usually assume that these objects are unchanging, and study them
with this assumption.

This assumption, however, is not a great way to model the world around us. Pretty
much every object we encounter is constantly changing; materials degrade and reinforce
themselves, sea levels rise and shrink, populations wax and wane. Accordingly, you would
want to model this idea of “change” mathematically! The field of dynamical systems,
roughly speaking, is the branch of mathematics that studies such changing objects.

Formally, we can define a dynamical system!' as follows:

e An object X; typically something that can have a number of different states.

e An update map f, that when applied to X outputs a “new” set of states for X. We
think of applying f to X as a way to advance one time-step, for whatever notion of
time-step that we’re simulating; that is, in some senses we would think of f(X) as
denoting what X will be after one second, or (for different maps f, X) one hour, or
one year.

As with many objects in mathematics, this is best understood with an example.

Question. Consider the problem of modeling a population of rabbits and wolves on an
island. Suppose that we start with 4000 rabbits and 1000 wolves. Moreover, suppose that
if we have R rabbits and W wolves at month ¢, the number of rabbits and wolves at month
t 4+ 1 can be written as

1
Rnew = 2Rold - 1VVoldv Wnew = Rold + §W01d~

What is the long-term behavior for our populations of rabbits and wolves?

!Formally speaking, we think of this as a discrete dynamical system, because we have “discretized” time
here: i.e. we have a sense in which we are advancing from a time ¢ to a time t 4+ 1 all at once, as opposed
to smoothly increasing ¢.



Answer. To answer this problem quickly, we use matrix notation! Specifically, notice that
we can describe our update rules as the following:

|:2 _1:| . |:Rold:| _ |:2Rold - 1I/Vold:| _ |:R1'16W:|
1 1/2) |[Woua Rod + 3Wola Whew

So, if we want to simulate our rabbit/wolf population, we can simply use this matrix to
repeatedly update our population states! We do this here:

2 —1] [4000
[1 1/2] : [1000] = [7000, 4500]

2 —1
[1 ) /2] - [7000, 4500] = [9500, 9250]

2 -1
[1 ) /2] - [9500,9250] = [9750,14125]

2 —1
[1 . /2] - [9750,14125] = [5375,16812.5]

2 -1
[1 1/2] - [5375,16812.5] = [—6062.5,13781.3] .
In other words, sometime between months 4 and 5 our rabbit population cratered to 0 (after
which, presumably, our model is no longer accurate?.)

This is a simple example of a dynamical system. Additionally, we’ve illustrated one of
the key questions that we like to study for any given dynamical system: given a starting
state along with an update rule, what does our dynamical system eventually go towards?
In this case, the rabbit population cratered (with presumably the wolf population cratering
shortly thereafter;) in general, you can see how you would simulate out such a system with
starting state equal to some vector ¥ and update rule given by a matrix A by just calculating
A™ - ¢ for increasingly large values of n.

This is not the only kind of problem we like to study with dynamical systems, though!
Consider the second sort of problem:

Question. On a second island, we want to study the long-term behavior of wolves and
moose over time. As before, we have a set update rule: if we have M moose and W wolves
at month ¢, the number of moose and wolves at month ¢ + 1 can be written as

Mnew = 4]\401d - 1VVoldu Wnew = 6]\4old - Wolda

4 -1
6 —1|°
we’re not trying to measure the long-term trajectory of some predetermined population.
Instead, we want to solve a different problem: suppose that we get to seed the island with
our own preselected population (M, W) of moose and wolves. Can we pick M, W so that
our population is stable: in other words, such that A(M, W) = (M, W)?

and we can denote this update map with a matrix A = [ This time, however,

20r there are antimatter rabbits.


http://en.wikipedia.org/wiki/Wolves_and_moose_on_Isle_Royale
http://en.wikipedia.org/wiki/Wolves_and_moose_on_Isle_Royale

Answer. We can do this! This is not too hard to do. We simply want a solution to the

4 -1| (M| _ M},
6 —1 w| W’
in other words, by expanding the LHS, we can see that we want M, W such that
AM —W | M
6M —-W| |W|’
In other words, we want 4M — W = M and 6M — W = W, i.e. in both cases we want

the relation 3M = W. So any population that has this proportion (three wolves for each
moose) is a stable population!

equation

The above sort of problem — where we have a matrix A and want to find a vector ¥’ such
that AU = ¥ — is one of the (many) reason we care about eigenvectors and eigenvalues!
If you haven’t seen them before, here’s a definition:

Definition. Let A be a n x n matrix over R. We say that v € I’ is an eigenvector and
A € F is an eigenvalue if

AU = M.
We usually ask that 7 # 0, to avoid silly trivial cases.

So, in the example above, a stable state was precisely an eigenvector with eigenvalue
1! Studying eigenvectors and eigenvalues is something you’ll do a lot more of in Math
4a/108a-b; instead, I want to talk about one more problem that relates the dynamical
systems concepts we’ve talked about to an area of modern research!

2 The Googles

Basically, before Google came along, web search engines were atrocious; many search
results were not very-sophisticated massive keyword-bashes plus some well-meaning but
dumb attempts to improve these results by hand. In the 90’s, Brin and Page (the two
founders of Google) came onto the scene, with the following simple idea:

Important websites are the websites other important websites link to.

This seems kinda circular, so let’s try framing this in more of a graph-theoretic frame-
work: Take the internet. Think of it as a collection of webpages, which we’ll think of as
“vertices,” along with a collection of hyperlinks, which we’ll think of as directed lines® going
between webpages. Call these webpages {v1, ... v,} for shorthand, and denote the collection
of webpages linking to some v; as the set LinksTo(v;).

In this sense, if we have some quantity of “importance” rank(v;) that we're associating
to each webpage 7, we still want it to obey the entire “important websites are the websites

3A “series of tubes,” if you will.



other important websites link to” idea. However, we can refine what we mean by this a little
bit. For example, suppose that we know a website is linked to by Google. On one hand,
this might seem important — Google is an important website, after alll — but on the other
hand, this isn’t actually that relevant, because Google basically links to everything. So
we don’t want to simply say something is important if it’s linked to by something important
— we want to weight that importance by how many other things that important website
links to! In other words, if you're somehow important and also only link to a few things,
we want to take those links very seriously — i.e. if something is linked to by the front page
of the New York Times or the Guardian, that’s probably pretty important!
If we write this down with symbols and formulae, we get the following equation:

B rank(v;)

k(v;) = ’
rank(v;) Z number of links leaving(v;)
v;€LinksTo(v;)

In other words, to find your rank, we add up all of the ranks of the webpages that link to
you, scaling each of those links by the number of other links leaving those webpages. This
is ...still circular. But it looks mathier! Also, it’s more promising from a linear-algebra
point of view. Suppose that we don’t think of each ranking individually, but rather take
them all together as some large rank vector 7= (rank(v),...rank(vy)).

As well, instead of thinking of the links one-by-one, consider the following n x n “link-
matrix” A, formed by doing the following:

1
number of links leaving(v;

e If there is a link to v; from v;, put a ) in the entry (i, 7).

e Otherwise, put a 0.

This contains all of the information about the internet’s links, in one handy n x n matrix!
Now, notice that if we multiply this matrix A by our rank vector 7, we get

Z rank(v;)

vj€LinksTo(v1) number of links leaving(v;)
Z rank(v;)

A 7= vj€LinksTo(v2) number of links leaving(v;)

Z rank(v;)
| £«vj€LinksTo(vn) number of links leaving(v;) |

In other words, if we the “mathy” version of the importance rule we derived earlier, we have
A-T=7.

In other words, the vector 7 that we're looking for is an eigenvector for A, corresponding
to the eigenvalue 1! The entries in this eigenvector then correspond to the “importance”
ranks we were looking for. In particular, the coordinate in the vector 7 with the highest
value corresponds to the “most important” website, and should be the first page suggested
by the search engine.

Up to tweaks and small modifications, this is precisely how search works nowadays;
people come up with quick and efficient ways to find eigenvectors for subgraphs of the
internet that correspond to the eigenvalue 1. (Actually finding this eigenvector in an efficient
manner is a problem people are still working on; much of modern search is a study for
“better/faster” ways to find this eigenvector!)
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