
CCS Discrete II Professor: Padraic Bartlett

Lecture 4: Graph Theory and the Four-Color Theorem

Week 4 UCSB 2015

Through the rest of this class, we’re going to refer frequently to things called graphs!
If you haven’t seen graphs before, we define them here:

Definition. A graph G with n vertices and m edges consists of the following two objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints.

Example. The following pair (V,E) defines a graph G on five vertices and five edges:

• V = {1, 2, 3, 4, 5},

• E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

Something mathematicians like to do to quickly represent graphs is draw them, which we
can do by taking each vertex and assigning it a point in the plane, and taking each edge
and drawing a curve between the two vertices represented by that edge. For example, one
way to draw our graph G is the following:

1

2

34

5

We could also draw our graph like this:

1

3

52

4

In general, all we care about for our graphs is their vertices and their edges; we don’t
usually care about how they are drawn, so long as they consist of the same vertices connected
via the same edges. Also, we usually will not care about how we “label” the vertices of a
graph: i.e. we will usually skip the labelings on our graphs, and just draw them as vertices
connected by edges.

Some graphs get special names:
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Definition. The cycle graph on n vertices, Cn, is the graph on the vertex set {v1, v2, . . . vn}
with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}, {vn, v1}}. The cycle graphs Cn can
be drawn as n-gons, as depicted below:

...

Definition. The path graph on n vertices, Pn, is the graph on the vertex set {v1, v2, . . . vn}
with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}}. The path graphs Pn can be drawn
as paths of length n, as depicted below:

...

Definition. The complete graph Kn. The complete graph on n vertices, Kn, is the
simple graph on the vertex set {v1, v2, . . . vn} that has every possible edge: in other words,
E(Kn) = {{vi, vj} : i 6= j}. We draw several of these graphs below:

Every vertex in a Kn has degree n− 1, as it has an edge connecting it to each of the other
n− 1 vertices; as well, a Kn has n(n− 1)/2 edges in total in it, by the degree-sum formula.
(Explicitly: every vertex has degree n− 1 and there are n vertices, therefore the sum of the
degrees of Kn’s vertices is n(n− 1). We’ve shown that this quantity is twice the number of
edges in the graph; dividing by 2 then tells us that the number of edges in Kn is n(n−1)/2,
as claimed.)

Definition. The complete bipartite graph Kn,m. The complete bipartite graph on
n+m vertices with part sizes n and m, Kn,m, is the following graph:

• V (Kn,m) = {v1, v2, . . . vn, w1, w2, . . . wm}.

• E(Kn,m) consists of all of the edges between the n-part and the m-part; in other
words, E(Kn,m) = {(vi, wj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The vertices vi all have degree m, as they have precisely m edges leaving them (one to every
vertex wj); similarly, the vertices wj all have degree n. By either the degree-sum formula
or just counting, we can see that there are nm edges in Kn,m.
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Definition. Given a graph G and another graph H, we say that H is a subgraph of G if
and only if V (H) ⊂ V (G) and E(H) ⊂ E(G).

Definition. Given a graph G, we call G connected if for any two vertices x, y ∈ V (G),
there is a path that starts at x and ends at y in our graph G.

Definition. If a graph G has no subgraphs that are cycle graphs, we call G acyclic. A
tree T is a graph that’s both connected and acyclic. In a tree, a leaf is a vertex whose
degree is 1.

Example. The following graph is a tree:

1 The Four-Color Theorem

Graph theory got its start in 1736, when Euler studied the Seven Bridges of Königsberg
problem. However, I claim that it first blossomed in earnest in 1852 when Guthrie came up
with the Four-Color Problem.

Theorem. Take any map, which for our purposes is a way to partition the plane R2 into
a collection of connected regions R1, . . . Rn with continuous boundaries. There is some way
to assign each region Ri to a color in the set {R,G,B, Y }, such that if two regions Ri, Rj

are “touching” (i.e. they share some nonzero length of boundary between them,) then those
two regions must receive different colors.

We’re going to prove this theorem in this class! First, some background:

Definition. Take any map M . We can turn this into a graph as follows:

• Assign to each region Ri a vertex vi.

• Connect vi to vj with an edge if the regions Ri, Rj are touching.

We call this graph the dual graph to M .

We give an example here:

Example. Consider the following map:

3
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This map consists of 14 regions. If you count, you can see that the figure drawn consists
thirteen triangles; as well, we have the “outer” region consisting of everything else left over,
which forms a very strange 15-gon.

Now, take each region, and assign to it a vertex. As well, connect two regions sharing a
border with an edge: this will give you the following graph, with edges given by the dashed
teal lines and vertices given by the yellow dots:

Note how we have drawn the edges so that they connect two adjacent countries by traveling
through the border that they share! This observation is useful to recall when thinking about
our second definition:

Definition. We say that a graph G is planar if we can draw it in the plane so that none
of its edges intersect.

Sometimes, it will help to think of planarity in the following way:
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Definition. We call a connected graph G planar if we can draw it on the sphere S2 in the
following fashion:

• Each vertex of G is represented by a point on the sphere.

• Each edge in G is represented by a continuous path drawn on the sphere connecting
the points corresponding to its vertices.

• These paths do not intersect each other, except for the trivial situation where two
paths share a common endpoint.

We call such a drawing a planar embedding of G on the sphere.

It is not hard to see that this definition is equivalent to our earlier definition of planarity.
Simply use the stereographic projection map (drawn below) to translate any graph on the
plane to a graph on the sphere:

By drawing lines from the “north pole” (0,0,1) through points either in the xy-plane or on the surface of

the sphere, we can translate graphs drawn on the sphere (in red) to graphs drawn in the plane (in yellow.)

Definition. For any connected planar graph G, we can define a face of G to be a connected
region of R whose boundary is given by the edges of G.

For example, the following graph has four faces, as labeled:

f1
f2 f4

f3

Notice that we always have the “outside” face in these drawings, which can be easy to
forget about when drawing our graphs on the plane. This is one reason why I like to think
about these graphs as drawn on the sphere; in this setting, there is no “outside” face, as all
of the faces are equally natural to work with.
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f1 f2 f3

f4

f2

f1 f3

f4

This observation has a nice accompanying lemma:

Lemma. Take any connected planar graph G, and any face F of G. Then G can be drawn
on the plane in such a way that F is the outside face of G.

Proof. Take a planar embedding of G on the unit sphere. Rotate this “drawn-upon” sphere
so that the face F contains the north pole (0, 0, 1) of the sphere. Now, perform stereographic
projection to create a planar embedding of G in R2. By construction, the face F is now the
outside face, which proves our claim.

It bears noting that not all graphs are planar:

Proposition. The graph K5 is not planar.

Proof. Draw a 5-cycle on the sphere. If the edges of this 5-cycle do not intersect each other,
then the resulting pentagon partitions the sphere into two parts, each part of which is
bounded by this pentagon. Take either one of these parts; notice that within that part, we
can draw at most two nonintersecting edges connecting nonadjacent vertices in that part.
Consequently, it is impossible to draw the additional 5 edges required to create K5 without
using overlapping edges. Therefore it is impossible to find a planar embedding of K5 on the
sphere, as claimed!

For maps, something you may have noticed is the following:

Observation. The dual graph to any map M is connected and planar.

Proof. On the homework!

The reason we care about this is that it gives us the following more graph-theoretic way
to describe the four-color theorem:

Theorem. Take any connected planar graph on finitely many vertices. There is a way to
assign each of its vertices one of the four colors {R,G,B, Y } such that no edge in this graph
has both endpoints colored the same color.

In general, this concept of coloring comes up all the time in graph theory! We give it a
name here:
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Definition. A graph G is called k-colorable if there is a collection of k distinct colors that
we can map the vertices of G to, so that no edge in G has both endpoints colored the same
color. Given a graph G, we define the chromatic number of G, χ(G), as the smallest
number k such that G is k-colorable.

This gives us one last rephrasing of the four-color theorem:

Theorem. If G is a connected planar graph on finitely many vertices, then χ(G) ≤ 4.

. . . So. Before we can start Kempe’s proof, we need one last bit of background, which is
the concept of Euler characteristic:

Theorem. (Euler characteristic.) Take any connected graph that has been drawn in R2 as
a planar graph. Then, if V is the number of vertices, E is the number of edges, and F is
the number of faces in this graph, we have the following relation:

V − E + F = 2.

Proof. We will actually prove a stronger claim: we will show that any planar multigraph
(a graph, but where we allow multiple edges between vertices, and also edges that start and
end at the same vertex) satisfies the V −E + F = 2 formula. For the rest of this proof, we
will assume that graph and multigraph are synonymous; once we are done with this proof,
though, we will stop assuming this.

3

1

2

45

6
f1

f2
f3

f6

f4

f5

We proceed by induction on the number of vertices. Suppose that V = 1. Then our
graph looks like something of the following form:

...

...

...
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I claim that V − E + F = 2 for any of these graphs, and prove it by a second induction
on the number of edges. For a zero-edge graph, this is easy; we have one vertex, no edges
and one face, we have V − E + F = 1 − 0 + 1 = 2. Now, assume via induction that every
one-vertex multigraph on n edges has V − E + F = 2. Take any graph on one vertex with
n+ 1 edges. Pick one of these edges, and look at it.

I claim that this edge borders exactly two faces. To see why, take any edge, and assign
an orientation to it (i.e. if our edge is {x, y}, then orient the edge so that we travel from
x to y.) If you do this, then our edge has two “sides,” the left- and right-hand sides, if we
travel along it via this orientation.

x

y

(left) (right)
x

y

(left) (right)

There are two possibilities, as drawn above: either the left- and right-hand sides are different,
or they are the same. This tells us that our edge either borders one or two faces! To see
that we have exactly two, we now recall that our edge (because our graph has exactly one
vertex) must start and end at the same vertex. In other words, it is a closed loop: i.e.
its outside is different from its inside! In other words, our left- and right-hand sides are
different, and our edge separates two distinct faces.

Therefore, deleting this edge does the following things to the graph: it decreases our
edge count by 1, and also decreases our face count by 1 (as we merge two faces when we
delete this edge.) In other words, deleting this edge does not change V − E + F ! But by
induction we know that V − E + F = 2 for all 1-vertex graphs on n edges, which is what
we get if we delete this edge from a n+ 1-edge graph. So we’re done!

This settles our base case for our larger induction on V , the number of vertices. We
now go to the second phase of an inductive proof: we show how to reduce larger cases to
smaller cases!

To do this, consider the following operation, called edge contraction. Take any edge
with two distinct endpoints. Delete this edge, and combine its two endpoints together: this
gives us a new graph! We draw examples of this process below: we start with a graph on
six vertices, and contract one by one the edges labeled in red at each step.

3

1

2

45

6

1

2

45

6

1

2

5

6

1

26 26 2
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Contracting an edge decreases the number of vertices by 1 at each step, as it “squishes
together” two adjacent vertices into one vertex. It also decreases the number of edges by 1
at each step, as we are contracting an edge to a point! Finally, it never changes the number
of faces; if two faces were distinct before this process happens, they stay distinct, as we’re
not making any cuts in any of our boundaries (and instead are just shrinking them partially
a bit!)

But this means that V −E+F is still constant! Therefore, by induction, if V −E+F holds
for every n-vertex multigraph, it holds for any n+ 1-vertex multigraph by just contracting
an edge! This finishes our induction, and thus our proof.

Using this theorem, we can prove the following useful lemma, which is the only part of
the Euler characteristic property that we need for our graph:

Lemma. Take any connected planar graph G. Then there is some vertex v in our graph
with degree at most 5.

Proof. We proceed by contradiction. Assume that every vertex has at least degree 6; we
will create a contradiction to the claim that V − E + F = 2.

First, consider the sum
∑

v∈G deg(v). On one hand, this is twice the number of edges
in G: this is because each edge shows up twice in this sum (once for each endpoint v when
we’re calculating deg(v).) On the other hand, if each vertex has degree at least 6, we have∑

v∈G
deg(v) ≥

∑
v∈G

6 = 6V.

Consequently, we have 2E ≥ 6V , and therefore E/3 ≥ V .
Similarly: notice that every face F of our planar graph must have at least three edges

bounding it, because our faces are made out of edges in our graph. Also, if we sum over
all faces the number of edges in each face, we get again at most twice the number of edges;
this is because each edge is in at most two faces (as discussed earlier!) Therefore, we have

2E ≥
∑
f∈G

facedeg(f) ≥
∑
f∈G

3 = 3F,

and therefore that 2E/3 ≥ F .
Therefore, we have

2 = V − E + F ≤ E/3− E + 2E/3 = 0,

which is clearly impossible. Therefore, we have a contradiction, and can conclude that our
initial assumption — that all vertices have degree at least 6 — is false!

2 Kempe’s Proof

With this notation set up, Kempe’s proof of the four-color theorem is actually fairly straight-
forward! We give it here.
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Proof. We proceed by contradiction. Assume not: that there are connected planar graphs
on finitely many vertices that need at least 5 colors to be colored properly. Consequently,
there must be some smallest connected planar graph G, in terms of the number of its
vertices, that needs at least five colors to color its vertices! Pick such a graph G. Notice
that if we remove any vertex v from G, we have a graph on a smaller number of vertices
than G. Consequently, the graph G \ {v} can be colored with four colors!

Let v be the vertex in G with degree at most 5. Delete v from G: this leaves us a graph
that we can four-color. Do so.

Our goal is now the following: to add v back in and (by possibly changing the coloring
of G \ {v}) give v one of our four colors, so that we have a four-coloring of G! This will
prove that our initial assumption — that a G can exist that needs five colors — is false,
and therefore prove our theorem.

We proceed by cases, considering v’s possible degrees.

1. v has degree 1, 2 or 3. In these cases, note that when we add v back in, it is adjacent
to at most three colors! So there is some fourth color left over. Give v that color.

v G-{v}

2. v has degree 4. In this case, there are two possibilities:

• In the four neighbors a, b, c, d of v, some color is not used. In this case, we are
in the same kind of situation as above: just color v with the color that doesn’t
show up in its neighbors?

• In the four neighbors a, b, c, d of v, each color is used exactly once. So, up to the
names of the colors, we are in the following situation:

va

b

c

d

First, notice that without losing any generality we may assume that there are
edges a↔ b↔ c↔ d↔ a. To see why, notice the following:

(a) Adding these edges does not change the assumed property that χ(G) ≥ 5,
as extra edges only makes it “harder” for us to color a graph.
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(b) We can always draw in these edges if they do not exist: for example, if the
edge {a, b} did not exist, we could add it in without breaking planarity by
simply drawing a path that is “very close” to the two edges {a, v} and {v, b}.
This path will not cross other edges, as there are no other edges leaving v.

v

b

c

d

a

(c) Therefore, because we have preserved χ(G) ≥ 5 and G ’s planarity, we can
put these edges into G without changing any of our arguments thus far!

By the argument above, we can now assume our graph looks like the following:

v

b

cd

a

Now, do the following: for any two colors C1, C2, let GC1,C2 denote the subgraph
of G given by taking all of the vertices in G that are colored either C1 or C2,
along with all of the edges that connect C1 vertices to C2 vertices.

Look at the red-yellow subgraph GRY . In this graph, there are two possibilities:

(a) There is no path from a to c in this graph. In other words, define ARY as
the subgraph of GRY given by taking all of the GRY vertices that have paths
to a, along with all of the edges in our graph between such vertices.

v

b

cd

a

ARY
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Suppose that we “switch” the colors red and yellow in the subgraph ARY .
Does it create any issues with our coloring?
Let’s check. No edge between two vertices in ARY is broken (i.e. has both
endpoints made the same color) by this process; before it had one red and
one yellow endpoint, and now it has one yellow and one red endpoint. As
well, no edge that involves no vertices in ARY is broken by this process, as
we did not change the colors of either of their endpoints!

v

b

cd

a

ARY

v

b

cd

a

AYR

Finally, consider any edge with one endpoint in ARY and another endpoint
not in ARY . In order for this edge to have one endpoint in ARY and another
not in ARY , one endpoint must be red or yellow (the endpoint in our set)
and the other must be green or blue (the endpoint not in our set!) So if we
switch red and yellow in ARY , this edge is also not broken!
No edges are broken by this swap; therefore we still have a valid coloring.
Furthermore, in this coloring, v has no neighbors that are red; so we can
color v red and have a four-coloring of our entire graph G!

(b) Alternately, (a) does not happen. In this case, there is a path from a to c
made entirely of red-yellow vertices linked by edges. In this case: look at
the graph GGB.

v

b

cd

a

DGB

12



In particular, notice that there cannot be a path from b to d along green-blue
edges, because our graph is planar and any such path would have to cross
our red-yellow edges! Therefore, we can define DGB to be the collection of
all of the GGB vertices that have paths to d, along with the edges in our
graph between such vertices. As noted above, d /∈ BGB.
Now, switch the colors G and B in DGB! This causes no conflicts, by exactly
the same argument as above, and yields a graph where v has no green neigh-
bor; therefore, we can give v the color green, and have a proper four-coloring
as desired.

v

b

cd

a

DGB

v

b

cd

a

DBG

3. v has degree 5. Again, as before, we can assume that all four of the colors in our graph
occur on G’s neighbors, because if they do not we can simply give v whichever color
is missing. Again, as before, we can assume that the neighbors of v are connected by
the following pentagonal structure.:

va

b

c

de

va

b

c

de

This is because of the following:

• Adding edges to our graph will never make it easier to color a graph: all they do
is give us more conditions on what vertices have to have different colors, which
only makes coloring harder.

• Furthermore we can add these edges without breaking planarity by simply draw-
ing them arbitrarily close to the v-edges.

Up to symmetry and colorings, then, we are in the following situation:
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va

b

c

de

This is because we have to repeat one color (so it might as well be red,) we have to use
all of the other colors (so we have green, blue and yellow in some order,) red cannot
occur on two adjacent vertices (because there are edges between adjacent vertices,)
and therefore up to rotation and flipping we have the above.

Do the following:

(a) First, look at the GGB subgraph. Either the vertex b is not connected to d in this
subgraph, in which case we can do the switching-trick that we discussed earlier.
Otherwise, b is connected to d in GGB, and we have a green-blue chain from b
to d.

(b) Now, look at the GGY subgraph. Similarly, either the vertex b is not connected to
e in this subgraph, in which case we can do the switching-trick that we discussed
earlier, or it is, and we have a green-yellow chain from b to e.

If we were able to switch in either of the two cases above, then v has only three colors
amongst its neighbors, and we can color it with whatever color remains.

Otherwise, we are in the following case:

va

b

c

de

Do the following:

(a) First, look at the GRB subgraph. Because of the green-yellow chain, the vertices
a and d are not connected to each other. Therefore, we can switch red and blue
in the a-connected part of this subgraph!
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(b) Now, look at the GRY subgraph. Because of the green-blue chain, the vertices c
and e are not connected to each other. Therefore, we can switch red and yellow
in the c-connected part of this subgraph!

va

b

c

de

va

b

c

de

This yields a graph where v has no red neighbor: consequently, we can color v red,
which gives us a proper four-coloring! This proves our claim.

3 Plot Twist

This proof . . . is in fact Kempe’s famous flawed proof of the four-color theorem, which stood
for 11+ years before being disproven! In particular, it was disproven: i.e. the proof you’ve
read above is false!

Guess what your HW is for today?

4 Graphs: Terminology

We transition from the four-color theorem to a more careful discussion of the definitions
and terms we need to discuss graphs. We start by discussing what it means for two graphs
to be the “same,” in the same sense that we talked about groups or fields or vector spaces
or sets being the same: isomorphisms!

Which is to say the following: In our first examples of graphs, we labeled all of our
vertices because this is part of the definition of what a graph *is* – a collection of labeled
vertices and edges between them.

However, when we had to actually do tricky mathematics — the four-color theorem —
we stopped labeling our graphs! And in general, I claim that we don’t really care about the
labelings of most of our graphs. For example, consider the following pair of graphs:
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These graphs are, in one sense, different; the first graph has an edge connecting 1 to 2,
where the second graph does not. However, in another sense, these graphs are representing
the same situation: they’re both depicting the graph sketched out by a pentagon!

For graphs like the ones in our menagerie, we don’t care so much about the labeling of
the vertices; rather, the interesting features of these graphs are the intersections of their
edges and vertices. In other words, we want to say that both of the graphs below are
“the” Petersen graph1: even though they initially look rather different, there is a way of
“relabeling” the vertices on the second graph so that (i, j) is an edge in the first graph iff
it’s an edge in the relabeled second graph.

How can we do this? What notion can we introduce that will allow us to regard such
graphs as being the “same,” in a well-defined sense? Well, consider the following:

Definition. We say that two graphs G1, G2 are isomorphic if and only if there is a map
σ : V (G1)→ V (G2) such that

• σ matches each element of V (G1) to a unique element of V (G2), and vice-versa: in
other words, σ is a way of relabeling G1’s vertices with G2’s labels, and vice-versa.

• {vi, vj} is an edge in G1 if and only if {σ(v1), σ(v2)} is an edge in G2.

We will often regard two isomorphic graphs as being the “same,” and therefore refer
to graphs like Kn or the Petersen graph without specifying or worrying about what the
vertices are labeled.

A concept that’s much more interesting (given the idea of isomorphism) is the concept
of a subgraph, which we define below:

1The Petersen graph P The Petersen graph P is a graph on ten vertices, drawn below:

The vertices in P all have degree three; by counting or the degree-sum formula, P has 15 edges. It is
notorious as being the counterexample or example to a number of conjectures in graph theory!
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Definition. Given a graph G and another graph H, we say that H is a subgraph of G if
and only if V (H) ⊂ V (G) and E(H) ⊂ E(G).

Example. The Petersen graph has the disjoint union of two pentagons C5 t C5 as a sub-
graph, which we shade in red below:

In general, when we ask if a graph H is a subgraph of a graph G, we won’t mention
a labeling of H’s vertices; in this situation, we’re actually asking whether there is *any*
subgraph of G that is isomorphic to H.

For example, one question we could ask is the following: what kinds of graphs contain
an triangle (i.e. a C3) as a subgraph? Or, more generally, what kinds of graphs contain an
odd cycle (i.e. a C2k+1) as a subgraph?

We answer this in the next section:

5 Classifying Bipartite Graphs

Definition. We call a graph G bipartite if and only if we can break the set V (G) up into
two parts V1(G) and V2(G), such that every edge e ∈ E(G) has one endpoint in V1(G) and
one endpoint in V2(G).

Alternately, we say that a graph is bipartite iff there is some way to color G’s vertices
red and blue – i.e. to take every vertex in G and assign it either the color blue or color red,
but not both or neither – so that every edge has one blue endpoint and one red endpoint.

Example. The following graph is bipartite, with indicated partition (V1, V2):
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However, there are graphs that are not bipartite; for example, C3, the triangle, is not
bipartite! This is not very hard to see: in any partition of C3’s vertices into two sets V1 and
V2, one of the two sets V1 or V2 has to contain two vertices of our triangle. Therefore, there
is an edge in C3 with both endpoints in one of our partitions; so this partition does not
make C3 bipartite. Because this holds for every possible partition, we can conclude that no
such partition exists – i.e. C3 is not bipartite!

In general, we can say much more:

Proposition 1. C2k+1 is not bipartite.

Proof. We will prove this proposition with a proof by contradiction. In other words, we will
assume that Cn is bipartite, and from there we’ll deduce something we know to be false;
from there, we can conclude that our assumption must not have been true in the first place
(as it led us to something false,) and therefore that Cn is not bipartite.

To do this: as stated, we’ll suppose for contradiction that C2k+1 is bipartite. Then,
there must be some way of coloring the vertices {v1, . . . v2k+1} of Cn red and blue, so that
no edge is monochrome (i.e. has two red endpoints or two blue endpoints.)

How do we do this? Well: look at vk+1. vk+1 has to be either red or blue: without any
loss of generality2, we can assume that it’s red. Then, because no edge in C1 is monochrome,
we specifically know that none of vk+1’s neighbors can be red: in other words, they both
have to be blue! So both vk and vk+2 are blue.

Similarly, we know that neither of vk or vk+2’s neighbors can be blue: so both vk−1 and
vk+3 have to be red! Repeating this process, we can see that

• vk+1 being red forces

• vk, vk+2 to be blue, which forces

• vk−1, vk+3 to be red, which forces

• vk−2, vk+4 to be blue, which forces

• . . .

• which forces v1, v2k+1 to both be the same color.

But there is an edge between v1 and vn in C2k+1! This contradicts the definition of bipartite:
therefore, we’ve reached a contradiction. Consequently, Cn cannot be bipartite.

This allows us to actually classify a large number of graphs as not being bipartite:

Proposition 2. If a graph G has a subgraph isomorphic to C2k+1, then G is not bipartite.

2The phrase “without loss of generality” is something mathematicians are overly fond of. In general, it’s
used in situations where there is some sort of symmetry to the situation that allows you to assume that a
certain situation holds: for example, in this use, we’re assuming that v1 is red because it has to be either
red or blue, and if it was blue we could just switch the colors “red” and “blue” through the entire proof.
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Proof. Suppose that G contains a subgraph H that’s not bipartite. Then, for any coloring
of H’s vertices, there is some edge in H that’s monochrome. Therefore, because any coloring
of G’s vertices into two parts will also color H’s vertices, we know that any coloring of G’s
vertices with the colors red and blue will create a monochrome edge; therefore, G cannot
be bipartite.

Is this it? Or are there other ways in which a graph can fail to be bipartite? Surprisingly,
as it turns out, there isn’t:

Proposition 3. A graph G on n vertices is bipartite if and only if none of its subgraphs
are isomorphic to an odd cycle.

Proof. Our earlier proposition proved the “if” direction of this claim: i.e. if a graph is
bipartite, it doesn’t have any odd cycles as subgraphs. We focus now on the “only if”
direction: i.e. given a graph that doesn’t contain any odd cycles, we seek to show that it is
bipartite.

First, note the following definitions:

Definition. A graph G is called connected iff for any two vertices v, w ∈ V (G), there is
a path connecting v and w.

Definition. Given a graph G, divide it into subgraphs H1, . . . Hk such that each of the sub-
graphs Hi are connected, and for any two Hi, Hj ’s there aren’t any edges with one endpoint
in Hi and one endpoint in Hj . These parts Hi are called the connected components of
G; a graph G is connected if it has only one connected component.

Definition. For a graph G and two vertices v, w we define the distance d(v, w) between
v and w as the number of edges of the smallest path connecting v and w. For a connected
graph, this quantity is always defined, d(v, v) = 0, and d(v, w) > 0 for any v 6= w.

Take our graph G, and divide it into its connected components H1, . . . Hk. If we can
find a red-blue coloring of each connected component Hi that shows it’s bipartite, we can
combine all of these colorings to get a coloring of all of G; because there are no edges between
the connected components, this combined coloring would show that G itself is bipartite!

Therefore, it suffices to just show that any connected graph H on n vertices without
any odd cycles in it is bipartite. To do this, take any vertex y ∈ V (H), and construct the
following sets:

• N0 = {w : d(v, y) = 0}

• N1 = {w : d(v, y) = 1}

• N2 = {w : d(v, y) = 2}

• . . .

• Nn = {w : d(v, y) = n}
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First, notice that every vertex v shows up in at least one of these sets, as H is connected
and has n vertices (and thus, any path in H has length ≤ n.) Furthermore, no vertex shows
up in more than one of these sets, because distance is well-defined. Finally, notice that for
any x ∈ Nk and any path P given by y = v0e01v1e12 . . . ek−1,kvk = x, each of the vertices vj
lies in Nj . This is because each of these has a path of length j from y to vj (just take our
path and cut it off at vj), and has no shorter path (because if there was a shorter path, we
could use it to get from y to x in less than k steps, and therefore d(y, x) would not be k.)

Now, color all of the vertices in the even N -sets red, and all of the vertices in the odd
N -sets blue. We claim that there are no monochromatic edges.

To see this, take any edge {v1, v2} in our graph H. Let d(y, v1) = k and d(y, v2) = l,
P1 be a path of length k connecting v1 with y, and P2 be a path of length l connecting
v2 with y. These paths may intersect repeatedly, so take x to be the furthest-away vertex
from y that’s in both of these paths. Let P ′1 be the path that we get by starting P1 at x
and proceeding to v1, and P ′2 be the path that we get by starting P2 at x and proceeding
to v2.

There are two possiblities. Either x is one of v1 or v2, in which case (because there’s
an edge from v1 to v2) the distance from y to v1 is either one greater or one less than the
distance from y to v2. In either case, v1 and v2 have different colors (because our colors
alternated between red and blue as our distance increased,) so this edge is not monochrome.

Otherwise, x is neither v1 or v2. In this case, look at the cycle formed by doing the
following:

• Start at x, and proceed along P ′1.

• Once we get to v1, travel along the edge {v1, v2} .

• Now, go backwards along P ′2 back to x.

This is a cycle, because P ′1 and P ′2 don’t share any vertices in common apart from x. What
is its length? Well, the length of P ′1 is just d(y, v1) − d(y, x), the length of P ′2 is just
d(y, v2)− d(y, x), and the length of a single edge is just 1; so, the total length of this path
is

d(y, v1)− d(y, x) + d(y, v2)− d(y, x) + 1 = d(y, v1) + d(y, v2)− (2d(y, x) + 1).

We know that this cannot be odd, because our graph has no odd cycles; so the number
above is even! Because (2d(y, x) + 1) is odd, this means that d(y, v1) + d(y, v2) must also
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be odd; in other words, exactly one of d(y, v1), d(y, v2) can be odd ,and exactly one can be
even. But this means specifically that exactly one must be blue and one must be red (under
our coloring scheme,) so our edge must not be monochromatic.

Therefore, our graph has no monochromatic edges; so it’s bipartite!
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