
CCS Discrete II Professor: Padraic Bartlett

Lecture 5: Trees!

Week 5 UCSB 2015

We closed our last lecture with a discussion of bipartite graphs. In that discussion, we
came up with a really nice characterization (a graph is bipartite if and only if it doesn’t
have a subgraph isomorphic to an odd-length cycle) for this entire family of graphs – a
powerful result!

In graph theory in general, proving powerful results like the above can only happen when
we’re focusing on a specific family of graphs. This is not to say that we can’t come up with
properties that are universal to all graphs — in our “proof” of the four-color theorem, we
showed that summing up the degrees of all of the vertices in any graph will always give you
twice the number of edges. However, because there are so many different kinds of graphs,
coming up with really interesting statements about all graphs will usually be impossible.
Therefore, what we’ll usually do in this course is study specific families of graphs – like,
say, bipartite graphs! – and come up with specific properties for those families!

In today’s lecture, we turn our attention to the family of tree graphs:

1 Basic Properties

Definition. If a graph G has no subgraphs isomorphic to cycles, we call G acyclic. A
forest is another word for an acyclic graph; similarly, a tree T is a graph that’s both
connected and acyclic. In a tree, a leaf is a vertex whose degree is 1.

Example. The following graph is a tree:

Trees have a number of properties, which we quickly state here:

Proposition 1. If G is a tree, G is bipartite.

Proof. We proved in our last lecture that a graph is bipartite if and only if it has no
subgraphs isomorphic to cycles of odd length. If G is a tree, none of its subgraphs are
isomorphic to cycles of any length at all (and in specific none of the odd ones;) therefore,
G is bipartite, as claimed.

1



Proposition 2. Every finite tree T with at least two vertices has at least two leaves.

Proof. Take any tree T on n vertices, and look at all of the paths in T that don’t repeat any
vertices. Because there are finitely many vertices and edges in T , there are finitely many
such paths; therefore, there must be a maximum length M that these paths can reach.
Let P be such a path, and let v0, vM be its two endpoints.

We claim that these two endpoints are both leaves. Indeed, if one of them wasn’t a leaf,
then there would have to be at least two edges leaving that vertex, one of which was not
used by our maximal path P . If that edge went back to some other vertex in P , it would
make a cycle (which our graph T doesn’t have, as it’s a tree); if it went to some vertex that’s
not in P , adding that edge and vertex to our path would a path of length M + 1, which is
strictly longer than our maximum-length path P (and is therefore impossible.) Thus, both
of these endpoints are leaves.

Proposition 3. Deleting a leaf from a tree on n vertices produces a new tree on n − 1
vertices.

Proof. Take any tree T on n vertices, let l ∈ V (T ) be a leaf of T , and let u, v ∈ V (T ) be a
pair of distinct vertices, neither of which are L.

Because T is connected, there must be a path P from u to v: pick this path P so that
it doesn’t repeat any vertices or edges. (You showed that we can do this on the HW.) We
know that this path cannot involve l (because if it went to l, it would have to travel along
the one edge that goes to l twice); therefore, if we delete l and its edge from our graph,
we still have a path from u to v. Therefore, the graph T \ {l} is still connected. Because
deleting an edge cannot create a cycle, this means that the graph T \ {l} is a tree.

Theorem. For a graph G on n vertices, the following statements are equivalent1:

1. G is a tree.

2. G is connected and has n− 1 edges.

3. G has n− 1 edges and no cycles.

4. G is a connected graph, and every edge of G is a cut-edge2.

Proof. HW!

2 How Many Trees Exist on n Vertices?

Given a property – say, being bipartite, or being a tree – a question we often like to ask
in graph theory (and the field of combinatorics in general!) is how many objects there are
that satisfy that property. For example, one question we might ask is the following:

1A series of true-false statements are called equivalent if one of them being true means that all of the
others are true. For example, the two statements “n is odd” and “n + 1 is even” are equivalent: whenever
one of them is true, the other must be true as well.

2An edge e ∈ G is called a cut-edge if deleting e from G increases the number of connected components
of G.

2



Question 4. How many distinct trees are there on n vertices?

(By “distinct,” we mean “distinct as graphs” – i.e. we will regard two trees as being
the same if and only if they are identical, not if they’re just isomorphic to each other. To
denote this, we will say that we’re asking for “distinct labeled trees,” to emphasize that
we’re caring about these as graphs, not just as graphs up to isomorphism.)

There are a number of beautiful proofs that answer this question (one of which we’ll see
later!) We study one such proof here:

Theorem 5. (Cayley) There are nn−2 distinct labeled trees on the vertex set {1, 2, . . . n}.

Proof. A trick we often employ in mathematics is the art of counting a quantity in two ways
(like in the degree-sum proof.) This trick is how we’ll prove this claim: specifically, we’re
going to show that there is a bijection3 between

• the collection of trees on {1, 2, . . . n}, and

• the sequences of length n− 2 of numbers from the set {1, 2, . . . n}.

Because there are nn−2 such sequences (this is pretty easy to see: each entry in our sequence
has n choices and we’re picking n− 2 entries,) if we can find such a bijection, it will prove
that there are nn−2 trees.

How can we turn a tree into a sequence {a1, . . . an−2} of numbers 1 . . . n? The trick,
here, is the following ingenious algorithm discovered by the mathematician Heinz Prüfer in
1918:

1. As input, take a tree on n vertices, with its vertices labeled with the numbers {1, . . . n}.

2. Look at the leaves of our tree; these are all labeled with distinct numbers. Let l be
the leaf of our tree with the smallest possible label, and let v be l’s only neighbor.

3. Delete l from our tree, mark it as “finished,” and write down v’s label as the first
entry in our sequence.

4. If our tree doesn’t consist of a single edge, repeat this process! I.e. go to step 2, where
we look at all of the leaves and pick the one with the smallest label, then to step 3,
where we delete this leaf and put the label of its only neighbor as the next entry in
our sequence, then return here again.

5. If our tree does consist of a single edge, then only two vertices remain (both of which
are not marked “finished,”) and we’ve created a sequence of length n− 2. Stop.

This process turns trees into sequences of numbers in {1, . . . n} of length n−2. To show
that it’s a bijection, we simply need to create an inverse process to the Prüfer algorithm:
i.e. a process that will take any sequence (a1, a2, . . . an−2) of elements from {1, . . . n} and

3A bijection between two collections A, B of objects is a map that sends each element of A to an element
of B, in a way such that each element of B is matched to exactly one element of A. Intuitively, a bijection
is just a way of “matching up” elements of A and B. Notice that if there’s a bijection between A and B,
then A and B have the same number of elements (because each element of A has a corresponding unique
element in B, and vice-versa.

3



create a tree, such that putting that tree into the Prüfer algorithm will return the same
sequence.

To do this, let A = (a1, a2, . . . an−2) be any sequence of numbers from {1, . . . n}. As well,
create a list E = (e1, . . . en) of integers, where each ei is equal to the number of times the
number i occurs in A, plus one. (The idea of this list E is that it is counting the number of
edges that each node i in our tree will be incident with.) We then proceed by the following
algorithm:

1. Let i be the first non-struck-out entry in A. Strike out the first entry from A.

2. Let j be the smallest index in {1, . . . n} such that ej = 1. Mark j as “finished,” draw
an edge connecting i to j, and decrement ei, ej both by 1. (Question: why is this
operation well-defined? Prove it to yourself!)

3. If there are any non-zero indices in E , go to 1 and repeat this process.

4. Otherwise, there are no elements left in A, and thus only two nonzero elements left
in E , both of which are 1/neither of which are finished. Connect these two elements
with an edge.

To see that this process always creates a tree T , simply notice that

• the process above starts off with T as a graph where each connected component
contains an unfinished vertex, and

• each stage consists of joining two unfinished vertices in distinct components and mark-
ing one vertex as finished: this decreases the number of connected components by 1
and leaves one unfinished vertex in each connected component.

• Because the process above runs for n− 1 steps, creates n− 1 edges in T , and we start
with n connected componenets, it produces a graph with n − 1 edges on n vertices
that’s connected. By our earlier proposition, this is a tree.

Finally, to prove our claim, it suffices to show that these two algorithms are inverses
of each other: i.e. that taking any sequence, applying the above inverse map, and then
applying the Prüfer map will result in the same sequence.

Proving this is a HW exercise! (But it’s not hard: consider those “finished” labels we
attached to vertices in the Prüfer algorithm and its inverse step.)

With the rest of this talk, we turn to an application of our understanding of how trees
work:

3 The Art Gallery Problem

Consider the following question:

Question 6. Suppose that you have an art gallery that is shaped like some sort of n-polygon,
and you want to place cameras with 360◦-viewing angles along the vertices of your polygon
in such a way that the entire gallery is under surveillance. How many cameras do you need?

4



A gallery guarded by 2 guards, Red and Green.

One trivial upper bound you can come up with is n guards: just put one guard on each
vertex of our polygon with n sides!

Can we do better? As it turns out, we can!

Claim. (Chvátal) You need at most bn/3c-many cameras to guard a n-polygon.

It bears noting that this bound of bn/3c is sharp. Consider the following art gallery:

A crown-shaped art gallery.

In this sort-of “crown-shaped” art gallery, each prong of the crown (i.e. triangle) needs
to have a guard on one of its three vertices to guard the entire triangle, as no other vertices
can “see” the entirety of that prong. Therefore, you need one guard for each prong; i.e.
n/3 guards, for a crown with n/3 prongs (i.e. n vertices.)

To prove Chvátal’s theorem, we need a few lemmas first:

Lemma 7. If G is a n-polygon with n ≥ 4, then there is some line segment formed by two
of the vertices in G that lies entirely in G.

Proof. Let v be the leftmost vertex of G. (If there is a tie, take v to be the top leftmost
vertex of G.) Let u and w be v’s neighbors, and examine the line segment uw. If this lies
entirely in G, great! Otherwise, it must cross some edge of G; consequently, there must be
a vertex of G that lies inside of the triangle spanned by the three points u, v, w. Let x be

5



the vertex furthest from the line segment uw that lies in this triangle. Then, look at the
line segment vx; because x is the furthest point in ∆uvw from uw, there can’t be any edges
of G that are crossed by this line segment (as one of their endpoints would necessarily be
closer to v.) So vx lies entirely in G.

Corollary 8. Any n-polygon can be divided into n− 2-triangles.

Proof. Using the process above, repeatedly divide our n-polygon into a pair of smaller
polygons, one with k vertices and the other with n+2−k vertices, until all of these polygons
are triangles. By induction, it is not hard to see that the number of these triangles is n− 2.

So: we can turn any polygon into a number of triangles stuck to each other! We use
this to turn any art gallery on n vertices into a graph on n− 2 vertices, as follows:

• Start by taking our polygon G and turning it into a collection {Ti}n−2i=1 of triangles.

• For each triangle Ti, associate a vertex ti.

• Connect two vertices ti, tj with an edge if their corresponding triangles Ti, Tj share a
face.

Call this graph T ′ the dual graph of T .

Turning the crown into a tree.

This is a graph! Furthermore, it’s a fairly special kind of graph: it’s a tree! We prove
this here:

Lemma 9. Let G be a polygon, T be a triangulation of G performed as above, and let T ′

be the dual graph to this triangulation (i.e. put a vertex in the center of every face of T ,
and connect two faces iff they share an edge.) This graph is a tree.

6



Proof. Let T be our triangulated polygon. In our construction above, each of the edges of
T ′ corresponds to a diagonal of the polygon G, that divides our polygon into two distinct
smaller polygons. Because cutting our polygon G along one of those diagonals will always
divide the polygon into two disconnected pieces, doing so will always result in two triangles
that are no longer connected by a chain of triangles with adjacent faces!

In other words: in the dual graph T ′ that we made above, removing any edge disconnects
our graph! So our graph is a tree, by our theorem from earlier.

This tree is remarkably useful; in particular, we can use its structure to create a system
for assigning guards! We do this here:

Lemma 10. Take a polygon G that has been triangulated as described earlier. Then we can
color each of the vertices of G either red, blue or green, so that each triangle contains one
vertex of each color.

Proof. For our triangulated polygon G, take the dual graph/tree T ′ that we constructed
above, and pick some vertex t0 in it. For all relevant integers k, let T ′k be the collection of
vertices that are distance k away from v, for every k. (The distance of two vertices from
each other is the length of the shortest path between them.)

Color the vertices of T as follows:

• Take the triangle in G associated to t0 and color its three vertices red, green and blue.

• Suppose we’ve colored all of the vertices attached to triangles with corresponding
vertices in T ′i , for some i. Now, look at the triangles corresponding to vertices in T ′i+1.
Each triangle associated to a vertex ti+1 in this set shares exactly one edge with some
triangle associated to a vertex in T ′i ; this is because if our vertex is distance i+1 from
t0, then (by taking the path of distance i + 1 and walking one step closer to t0) there
is an adjacent vertex (and thus face-sharing triangle) at distance i, i.e. in T ′i .

Furthermore, because T ′ is a tree, there is exactly one edge from any ti+1 to vertices
in the set

⋃i+1
j=0 T

′
j . This is because the existence of any other edge would create a

cycle, because it would give us two distinct paths to t0!

Therefore, the triangle associated to ti+1 shares a face with only one other triangle
in all of the sets that we’ve already colored! Therefore, only two of its vertices have
been assigned colors. Thus, there is always some spare third color to use to color its
third vertex! Use this to color its third vertex, and repeat for all vertices in Ti+1.

• Repeat until every vertex in T is colored. Note that each triangle has one vertex of
each color.

Corollary 11. You need at most bn/3c-many cameras to guard a n-polygon.

Proof. By the above, create a triangulation and 3-coloring of our polygon G with the colors
{R,G,B}. Now, station guards at whichever color is used the least number of times in this
triangulation! Each guard can see everything in their assigned triangle by construction.
Therefore, the entire art gallery is guarded.

7



To guard this crown, simply pick one of (red, green, blue,) and station guards at vertices of that color.

8


	Basic Properties
	How Many Trees Exist on n Vertices?
	The Art Gallery Problem

