
CCS Discrete II Professor: Padraic Bartlett

Lecture 6: The Chromatic Number

Week 6 UCSB 2015

In our discussion of bipartite graphs, we mentioned that one way to classify bipartite
graphs was to think of them as graphs that are 2-colorable: i.e. graphs in which we could
color all of the vertices either red or blue, so that no edge would have two endpoints of the
same color. As well, when we studied the four-color theorem, the general notion of “graph
colorings” came up; the entirety of the four-color theorem was the claim that the chromatic
number of any planar graph was at most 4.

So: graph colorings seem interesting. We should study them!

1 Basic Definitions

For completeness’s sake, we remind the reader about how we defined “colorability:”

Definition. We say that a graph G is k-colorable if we can assign the colors1 {1, . . . k}
to the vertices in V (G), in such a way that every vertex gets exactly one color and no edge
in E(G) has both of its endpoints colored the same color. We call such a coloring a proper
coloring, though sometimes where it’s clear what we mean we’ll just call it a coloring.

Alternately, such graphs are sometimes called k-partite. For a fixed graph G, if k is the
smallest number such that G admits a k-coloring, we say that the chromatic number of G
is k, and write χ(G) = k.

To illustrate how this definitions goes, we work a few examples:

1. Kn: The complete graph on n vertices has chromatic number n. To see that it is at
least n, simply paint each of the vertices {v1, . . . vn} of V (Kn) a different color (say,
vi is painted i;) then every edge trivially has two endpoints of different colors. To
see that this is necessary, take any proper coloring of Kn, and look at any vertex vi:
because it’s connected to every other vertex, it cannot be the same color as any other
vertex (and therefore must have a different color than every other vertex, which forces
n colors.)

2. Edgeless graphs: If a graph G has no edges, its chromatic number is 1; just color every
vertex the same color. These are also the only graphs with chromatic number 1; any
graph with an edge needs at least two colors to properly color it, as both endpoints
of that edge cannot be the same color.

3. Bipartite graphs: By definition, every bipartite graph with at least one edge has
chromatic number 2.

1By “color,” we just mean a collection of distinct labels, like (say) natural numbers. Actual colors have
the disadvantage of being finite in number, which is rather pesky.

1



4. The pentagon: The pentagon is an odd cycle, which we showed was not bipartite;
so its chromatic number must be greater than 2. In fact, its chromatic number is 3:
simply color its vertices R,G,R,G,B in order by walking around the perimeter of
the pentagon. (In fact, this same idea can be used to show that any cycle of length
2k + 1 is 3-colorable: we know that these are not bipartite, and that they do admit
3-colorings via the R,G,R,G . . . R,G,B-coloring described above.)

5. In our first graph theory lecture, we said that one way of phrasing the 4-color theorem
was to say that all “map-graphs” could be colored with at most four colors. In the
language we’ve described above, this is the claim that all “map-graphs” have chromatic
number at most 4.

2 Properties and Examples

We developed this notion of k-chromatic graphs by generalizing the concept of bipartite
graphs. A natural question to ask, then, is whether our earlier classifcation of bipartite
graphs can be generalized to k-partite graphs. I.e.: we showed that a graph was bipartite
if and only if it didn’t contain any odd cycles. Is there a similar classification for all graphs
with chromatic number (say) 3?

Surprisingly: no! While there certainly are tons of 3-chromatic graphs, there is no
materially different classification of all of them beyond “there is a 3-coloring of this graph”
that graph theorists have found. In fact, while graph theorists have been studying colorings
pretty much since the 4-color theorem was postulated, there really is a lot that we don’t
know out there! (For example: consider the unit-distance graph, which has vertex set
R2 and an edge between two points in the plane if and only if the distance between them
is 1. On the HW, you proved that its chromatic number is between 4 and 7: to this day,
these are the best known bounds.)

However, we can say a few things about how the chromatic number relates to some
other properties of a graph. We state a few relevant definitions below, and then prove a
few related propositions:

Definition. For a graph G and a subgraph H, we say that H is a induced subgraph of
G if and only if whenever u, v ∈ V (H) and {u, v} ∈ E(G), we have that {u, v} ∈ E(H). In
other words, H is a subgraph made by picking out some vertices from within H, and then
adding in every edge in G that connects those vertices.

Definition. For a graph G, we define the clique number of G, ω(G), to be the largest
value of k for which Kk is an induced subgraph of G. As every nonempty graph contains
(at the minimum) a K1 as an induced subgraph, this is a well-defined quantity.

Proposition 1. If G is a graph and H is any subgraph of G, χ(G) ≥ χ(H).

Proof. This is remarkably trivial. If G admits a k-coloring, then simply take some proper
k-coloring of G and use it to color H’s vertices. Because H’s edges are all in E, we know
that none of these edges are monochromatic under this coloring; therefore, it is a proper
k-coloring of H, and thus χ(H) ≤ k = χ(G).

2



Proposition 2. If G is a graph, χ(G) ≥ ω(G).

Proof. Let H be an induced subgraph of G isomorphic to Kω(G), which exists by definition.
Then, by the above proposition, χ(G) ≥ χ(Kω(G)) = ω(G).

This gives us a lower bound. The following definition and proposition from the HW give
us an upper bound, as well:

Definition. For a graph G, let ∆(G) denote the maximum degree of any of G’s vertices,
and δ(G) denote the minimum degree of any of G’s vertices.

Proposition 3. For any graph G, χ(G) ≤ ∆(G) + 1.

Proof. The algorithm here is remarkably simple, but at the same time important enough
that we give it a name: the greedy algorithm. We define it here:

• (Greedy algorithm.) As input: take in a graph G with vertex set V (G) = {v1, . . . vn},
and a list of potential colors N.

• At stage k: look at vk, and color it the smallest color in N not yet used on any of vk’s
neighbors.

By construction, this creates a proper coloring of G. As well, because each vertex has
≤ ∆(G) neighbors, we’ll always have at least one choice of a color that’s less than ∆(G)+1;
therefore, this creates a proper coloring of G that uses ≤ ∆(G) + 1 colors! So χ(G) ≤
∆(G) + 1, as claimed.

To sum up: we’ve shown that for any graph G, we have

ω(G) ≤ χ(G) ≤ ∆(G) + 1.

Which is something! However, as it turns out, it’s not a lot. If you consider the complete
bipartite graph Kn,n formed by taking two groups of n vertices and connecting all vertices
in one group to the other group, the degree of any vertex in this graph is n, while the
chromatic number is 2; so there can be a massive gap between ∆(G) and χ(G). (On the
HW, you will prove that this gap isn’t just a accident, in the following sense; there are
orderings {v1, . . . v2n} that you can place on the vertices of any Kn,n that will make the
greedy algorithm give such an “awful” n-coloring.)

As well, the gap between ω(G) and χ(G) can be quite large, as the following family of
graphs shows:

Example. The Mycielski construction is a method for turning a triangle-free graph with
chromatic number k into a larger triangle-free graph with chromatic number k+1. It works
as follows:

• As input, take a triangle-free graph G with χ(G) = k and vertex set {v1, . . . vn}.

• Form the graph G′ as follows: let V (G′) = {v1, . . . vn} ∪ {u1, . . . un} ∪ {w}.

• Start with E(G′) = E(G).

• For every ui, add edges from ui to all of vi’s neighbors.

• Finally, attach an edge from w to every vertex {u1, . . . un}.

3



Starting from the triangle-free 2-chromatic graph K2, here are two consecutive applica-
tions of the above process:

Proposition 4. The above process does what it claims: i.e. given a triangle-free graph with
chromatic number k, it returns a larger triangle-free graph with chromatic number k + 1.

Proof. Let G,G′ be as described above. For convenience, let’s refer to {v1, . . . vn} as V and
{u1, . . . un} as U . First, notice that there are no edges between any of the elements in U in
G′; therefore, any triangle could not involve two elements from U . Because G was triangle-
free, it also could not consist of three elements from V ; finally, because w is not connected
to any elements in V , no triangle can involve w. So, if a triangle exists, it must consist of
two elements vi, vj in V and an element ul in U ; however, we know that ul’s only neighbors
in V are the neighbors of vl. Therefore, if (vi, vj , ul) was a triangle, (vi, vj , vl) would also be
a triangle; but this would mean that G contained a triangle, which contradicts our choice
of G.

Therefore, G′ is triangle-free; it suffices to show that G′ has chromatic number k + 1.
To create a proper k + 1-coloring of G′: take a proper coloring f : V (G) → {1, . . . k}

and create a new coloring map f ′ : V (G′)→ {1, . . . k + 1} by setting

• f ′(vi) = f(vi),

• f ′(ui) = f(vi), and

• f(w) = k + 1.

Because each ui is connected to all of vi’s neighbors, none of which are colored f(vi), we
know that no conflicts come up there; as well, because f(w) = k + 1, no conflicts can arise
there. So this is a proper coloring.

Now, take any k-coloring g of G′: we seek to show that this coloring must be improper,
which would prove that G′ is k+ 1-chromatic. Doing this is on the homework for this week!

As the example above illustrates, our bounds can (unfortunately) be rather loose: the
Mycielskians, for example, have ω(M) = 2 (because they don’t even contain a triangle,
K3!), and yet have arbitrarily high chromatic number. Conversely, as noted before, the
complete bipartite graphs Kn,n all have chromatic number 2, and yet have ∆(G) = n; so
our upper bound of ∆(G) + 1 can also be rather misleading!

We might hope that we can do better with some more machinery. As it turns out, we
can!

4



Theorem. (Brooks’s theorem.) Suppose that G is a connected graph that is neither a
complete graph nor an odd cycle. Then χ(G) ≤ ∆(G).

(We didn’t say we could do a lot better.)

Proof. We need one key ingredient for this proof: last Friday’s quiz! Recall the concept of
a spanning tree, which we defined there:

Definition. Take any connected graph G. A spanning tree is a subgraph T of G with
the following two properties:

• T is a tree.

• T contains every vertex of G.

G T
The quiz claimed that every connected graph on finitely many vertices contains a span-

ning tree. There are many ways to prove this; perhaps the simplest is to simply take our
connected graph G and see if it has any cycles. If it does not, then it is a tree by definition;
otherwise, it contains a cycle C = (v1, {v1, v2}, . . . vn, {vn, v1}, v1). Pick any one edge in
that cycle — say, {v1, v2} — and delete it from our graph. Notice that this does not dis-
connect the graph, as any path that used that edge can simply go the “long way” around
(i.e. replace {v1, v2} in any walk with ({v1, vn}, vn, {vn, vn−1}, . . . {v3, v2}, v2).) Iterate this
process, which must eventually halt as our graph can only have finitely many edges; the
result is a connected graph on the same vertices with no cycles, i.e. a spanning tree.

We will use spanning trees to color graphs as follows: take any spanning tree T of a
graph G. We can use this tree to make a notion of “distance” on our graph G as follows:
for any two vertices v1, v2 ∈ G, we set dT (v1, v2) to be the length of the shortest path in T
that connects v1, v2.

Take any vertex vn ∈ T ; call this the “root” vertex. Collect all of the vertices of G
into groups sorted by their distance from vn; say A0, A1, A2, . . . Al, where the elements of
Ai are precisely those vertices that are distance i from vn under the dT -metric, and l is the
maximum such distance.

Use this grouping to create an “ordering” on the vertices of G as follows: let the elements
of Al be the “first” elements in our ordering, the elements of Al−1 be the “next” elements,
and so on/so forth until we get to A0, which contains vn (the only element distance 0
from vn), which is the “last” element in our ordering. In the event that there are multiple
elements in an Ai, resolve ties between elements in any matter you like (it won’t matter.)

For example, if we take our graph G and spanning tree T from our example on the
previous page, and pick the bottom-left vertex to be the “root” vertex vn (for n = 8, as
we’re on an eight-vertex graph), one ordering we could get is the following:

5



v8 v7

v6
v5

v4

v3

v2

v1

The reason we care about this is the following observation:

Observation. Suppose that G is a graph and vn is a vertex with degree strictly less than
∆(G). Then running the greedy coloring algorithm to color G’s vertices, using the “tree-
ordering” rooted at vn, colors G with at most ∆(G) colors.

Proof. Take any vertex vi, for i 6= n. When we go to color vi using the greedy algorithm,
we will have never colored any of vi’s neighbors that are closer to vn than vi under the
dT -metric. In particular, this means that there will always be at least one neighbor of vi
that is not yet colored!

Consequently, there are at most ∆(G) − 1 neighbors of vi that are currently colored,
and therefore we will never need more than ∆(G) colors to color vi as well.

The only vertex that we could conceivably have a problem with, then, is vn; but the
degree of vn is strictly less than ∆(G), so it too will never have more than ∆(G) − 1
already-colored neighbors. So we’re done!

Great! We’ve proven Brooks’s theorem for all non-regular graphs2 For k-regular
graphs, we do not need to worry about the case where k = 2, as those graphs are pre-
cisely the cycle graphs Cn (and thus are either bipartite or odd cycles, and we assumed that
we’re not working with odd cycles in our theorem statement.) So we only need to consider
k-regular graphs for k at least 3.

We can get another case for “free” by using induction. Suppose that our graph G has
a cut-vertex3 vn. Then, if we were to delete vn from our graph, we would separate our
graph into k pieces G1, . . . Gl, all of which would be disconnected from each other.

We prove our claim (that any such cut-vertex graph is ∆(G)-colorable) by induction on
the number of vertices in G. If our graph has one vertex, we are trivially set. Inductively,
assume that our claim holds on all cut-vertex graphs with no more than n vertices, and take
any n + 1-vertex graph with a cut-vertex. Let G1, . . . Gl be the components that deleting
vn splits our graph up into. Add vn back into each component to get graphs G′1, . . . G

′
l;

these are all graphs on at most n vertices, and therefore have ∆(G)-colorings. Pick such
a coloring for each graph; furthermore, because the names of the colors are arbitrary, pick
colorings so that vn gets the same color across all colorings.

But the only place where these colorings overlap is on the single vertex vn; so the union
of these colorings is again a proper coloring!

This leaves us with the following kinds of graphs G to consider: namely, those that

• are not complete graphs,

2A graph is called k-regular if the degree of every vertex is k, and regular in general if there is some k
such that it is k-regular.

3A cut-vertex in a graph G is a vertex that if you delete that vertex, you will separate your graph into
multiple pieces. This is analogous to the idea of a cut-edge.

6



• have no cut-vertices, and

• are k-regular for some k ≥ 3.

We make the following claim:

Claim. For any such graph G, there must be some vertex vn with neighbors v1, v2 so that
the following holds:

• v1 and v2 are not connected.

• G− {v1, v2} is connected.

If this holds, then we can use the greedy algorithm as follows: let v1, v2 be the first two
vertices in our ordering, and order the remaining vertices using the dT algorithm on a
spanning tree in the graph G − {v1, v2} from before. This process will insure that v1, v2
both get the same color; this is because we use the smallest color available when possible,
and there is no edge v1 ↔ v2. It will insure that every vertex other than vn gets a color
from {1, . . .∆(G)}; this is because they all have a neighbor that is currently uncolored when
they are colored. Finally, this will insure that vn also can have a color from {1, . . .∆(G)};
this holds because we’ve made sure that two of its neighbors share the same color, meaning
there must be at least one color left over. This finishes our proof; so we would be done if
we can prove this claim!

We consider two cases.

1. G is a “3-vertex-connected” graph4 In this case, take any vertex v1 ∈ V (G). Because
G is connected and is not the complete graph, there is some vertex v2 that is exactly
two edges away from v1 (connected implies that there are paths to every vertex, and
not complete implies at least one path is longer than one edge.)

Let vn be the vertex in between v1, v2 on that two-edge path. Notice that by assump-
tion v1 6↔ v2 and by 3-vertex-connectivity deleting v1, v2 cannot disconnect our graph;
so we’re done!

2. Otherwise, our graph is 2-vertex-connected, with some cutset {vn, x} of size two.

Here is where we do strange things5.

Define a block subgraph B to be any subgraph that is 2-vertex connected and maxi-
mal: that is, there is no larger subgraph that is two-connected and contains B.

B1
B2

vny

A 2-vertex connected graph G. Deleting vn yields a 1-vertex-connected graph, which has two blocks

B1, B2. Notice that two blocks can overlap; for instance, the vertex y is in both blocks.

4A connected graph G is called k-vertex-connected if there is no way to delete k− 1 vertices from G that
disconnects G. We define the vertex connectivity of a graph G as the largest value of k for which the
graph is connected, and write this as κ(G).

5Well, stranger things. We always do strange things.

7



Take any 1-connected graph G. We can turn this into a tree TB as follows:

• Vertices: create one vertex for each block Bi of our graph, and one vertex of our
graph for each cut-vertex xj in our graph.

• Edges: connect a block Bi to a cut-vertex xj if and only if xj ∈ Bi.

B1
B2

B4

B5

x

y

z

B3

w

w y

zx

B2

B5

B4B3

B1

A graph G along with its “block-tree” TB .

Things that will be on Friday’s homework:

• Any two blocks share at most one cut-vertex in common.

• If e is an edge linking two distinct blocks, then at least one endpoint of e is a
cut-vertex.

• This is indeed a tree!

As a result, we know that in any block-graph there must be two “leaf-blocks:” that
is, two blocks that are leaves in the block-tree. By the above, these leaf-blocks are
connected to the entire rest of the graph by precisely one cut-vertex; deleting this
cut-vertex separates this leaf-block from all of the other blocks.

What can we do with this? Well: let’s return to our original problem setup, where
we had a 2-connected graph G with some cutset {vn, x} of size two. Delete vn; we
get a graph G − {vn} that is 1-connected. Label its blocks B1, . . . Bn. Take any two
distinct leaf-blocks B1, B2. We know that vn must have a non-cut-vertex neighbor in
each of B1, B2, as otherwise the single cut-vertex that connects each leaf to the rest
of the graph would be a cut-vertex in G itself! Call its neighbor in B1 v1, and its
neighbor in B2 v2.

Because our graph G is regular of degree at least 3, vn has at least one other neighbor
in our graph. Because of this, we can see that G− {v1, v2} is connected:

• Deleting v1, v2 does not disconnect any individual block, as there is at most one
of these vertices in any block. So we can travel within blocks.

• Each block is still connected to the other blocks by the cut-vertices, as we didn’t
delete any cut-vertices. So we can get from any block to any other block.

• Finally, we can also still get to vn, as it is degree at least 3 (and thus has a third
neighbor in some block.

8



Finally, we simply need to verify that there is no edge v1 ↔ v2. But this is not hard
to see; if there were such an edge, then either v1, v2 would have to be a cut-vertex in
G− {vn}. But we picked v1, v2 to not be cut-vertices!

This completes our claim, and thus our proof.

Yay! Improving bounds by 1! (The real lesson here: coloring is weird.)

9


	Basic Definitions
	Properties and Examples

