
CCS Discrete II Professor: Padraic Bartlett

Lecture 8: The Probabilistic Method

Week 8 UCSB 2015

In last week’s lectures, we defined the Ramsey numbers R(k, l), and found upper bounds
on them! This week, we will study one particularly powerful technique for finding lower
bounds on Ramsey numbers: the probabilistic method in combinatorics!

1 The Probabilistic Method

1.1 Background and Definitions

The probabilistic method in combinatorics first arose in 1947, when Erdös used it to prove
the following claim:

Theorem 1. R(k, k) > b2k/2c.

This result at the time was far better than anything we currently knew; indeed, our
best bounds to the present day without using the probabilistic method are roughly O(k3),
which is far smaller than 2k/2 for any remotely large value of k!

To go through his methods, however, we first need an introduction to the basics of
probability! We do this here.

Definition. A finite probability space consists of two things:

• A finite set Ω.

• A measure Pr on Ω, such that Pr(Ω) = 1. In case you’ve forgotten, saying that
Pr is a measure is a way of saying that Pr is a function P(Ω) → R+, such that the
following properties are satisfied:

– Pr(∅) = 0.

– For any collection {Xi}∞i=1 of subsets of Ω, Pr

( ∞⋃
i=1

Xi

)
≤

n∑
i=1

Pr(Xi).

– For any collection {Xi}∞i=1 of disjoint subsets of Ω, Pr

( ∞⋃
i=1

Xi

)
=

n∑
i=1

Pr(Xi).

For example, one probability distribution on Ω = {1, 2, 3, 4, 5, 6} could be the distri-
bution that believes that Pr({i}) = 1/6 for each individual i, and more generally that
Pr(S) = |S|/6 for any subset S of Ω. In this sense, this probability distribution is captur-
ing the idea of rolling a fair six-sided die, and seeing what comes up.

This sort of “fair” distribution has a name: namely, the uniform distribution!

Definition. The uniform distribution on a finite space Ω is the probability space that
assigns the measure |S|/|Ω| to every subset S of Ω. In a sense, this measure thinks that
any two elements in Ω are “equally likely;” think about why this is true!
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We have some useful notation and language for working with probability spaces:

Definition. An event S is just any subset of a probability space. For example, in the
six-sided die probability distribution discussed earlier, the set {2, 4, 6} is an event; you can
think of this as the event where our die comes up as an even number. The probability of
an event S occurring is just Pr(S); i.e. the probability that our die when rolled is even is
just Pr({2, 4, 6}) = 3/6 = 1/2, as expected.

Notice that by definition, as Pr is a measure, for any two events A,B, we always have
Pr(A ∪ B) ≤ Pr(A) + Pr(B). In other words, given two events A,B, the probability of
either A or B happening (or both!) is at most the probability that A happens, plus the
probability that B happens.

Definition. A real-valued random variable X on a probability space Ω is simply any
function Ω→ R.

Given any random variable X¡ we can talk about the expected value of X; that is,
the “average value” of X on Ω, where we use Pr to give ourselves a good notion of what
“average” should mean. Formally, we define this as the following sum:∑

ωinΩ

Pr(ω) ·X(ω).

For example, consider our six-sided die probability space again, and the random variable X
defined by X(i) = i (in other words, X is the random variable that outputs the top face of
the die when we roll it.)

The expected value of X would be∑
ωinΩ

Pr(ω) ·X(ω) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

21

6
=

7

2
.

In other words, rolling a fair six-sided die once yields an average face value of 3.5.

With this notation established, we can use it to solve some problems in graph theory!

1.2 Applications to Graphs

Theorem 2. R(k, k) > b2k/2c.

Proof. Fix some value of n, and consider a random uniformly-chosen 2-coloring of Kn’s
edges: in other words, let us work in the probability space (Ω, P r) = (all 2-colorings of Kn’s

edges, Pr(ω) = 1/2(n2).)
For some fixed set R of k vertices in V (Kn), let AR be the event that the induced

subgraph on R is monochrome. Then, we have that

Pr(AR) = 2 ·
(

2(n2)−(k2)
)
/2(n2) = 21−(k2).

Thus, we have that the probability of at least one of the AR’s occuring is bounded by

Pr(
⋃
|R|=k

AR) ≤
∑

R⊂Ω,|R|=k

Pr(AR) =

(
n

k

)
21−(k2).
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If we can show that
(
n
k

)
21−(k2) is less that 1, then we know that with nonzero probability

there will be some 2-coloring ω ∈ Ω in which none of the AR’s occur! In other words, we
know that there is a 2-coloring of Kn that avoids both a red and a blue Kk.

Solving, we see that(
n

k

)
21−(k2) <

nk

k!
· 21+(k/2)−(k2/2) =

21+k/2

k!
· nk

2k2/2
< 1

whenever n = b2k/2c, k ≥ 3. So we’re done!

So: why did we do this? In other words, what did using probabilistic methods gain us?
The answer, essentially, is that the probabilistic method allows us to work with graphs

that are both large and unstructured ! When using constructive methods, we can rarely (if
at all) do this! I.e.:

• If you’re trying to construct a large graph by gluing together pieces of smaller graphs,
you are almost always inducing a lot of structure into your larger graph; consequently,
your construction will usually be a highly atypical graph! For example, try construct-
ing a graph of both girth and chromatic number greater than 6 – you’ll quickly find
that it’s stunningly difficult to avoid introducing structure in any building method
that won’t create small cycles or small chromatic numbers. Yet, using the proba-
bilistic method we can easily show that there are graphs of arbitrarily high girth and
chromatic number! – in fact, that almost all sufficiently large graphs are such things.

• Conversely, suppose that you’re trying to avoid such problems, and have decided to
simply check by hand all of the cases for some reasonably small number of vertices –

say, 20. But there are 2(202 ) = 2190 ≈ 1.5 ∗ 1057 such graphs! Even with stunningly
powerful supercomputers, there’s no hope. Yet, with the probabilistic method, we
will routinely create counterexamples with > 1010 vertices in them! – things we could
never hope to find in any deterministic search.

We give another simple example here:

Theorem 3. If G is a graph, then G contains a bipartite subgraph with at least E/2 edges.

Proof. Pick a subset of G’s vertices, T , uniformly at random (i.e. select T by flipping a
coin for each of G’s vertices, and placing vertices in T iff our coin comes up heads.) Let
B = V (G) \ T .

Call an edge {x, y} of E(G) crossing iff exactly one of x, y lie in T , and let X be the
random variable defined by

X(T ) = number of crossing edges for T.

Then, we have that

X(T ) =
∑

Xx,y(T ),
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where Xx,y(T ) is the 0-1 random variable defined by Xx,y(T ) = 1 if {x, y} is an edge of G
that’s crossing, and 0 otherwise.

The expectation E(Xx,y) is clearly 1/2, because we chose x and y to be in T at random.
Thus, by the linearity of expectation, we have that

E(X) =
∑

E(Xx,y) = E/2.

so the expected number of crossing edges for a random subset of G is E/2. Thus, there
must be some T ⊂ V (G) such that X(T ) ≥ E/2; taking the collection of crossing edges this
set creates then gives us a bipartite graph (B, T ) with ≥ E/2 edges in it.

1.3 A Trickier Example: Graphs with Arbitrarily High Girth and Chro-
matic Number

In past lectures, we used the Mycielski construction to create triangle-free graphs with
arbitrarily high chromatic number; on the HW, we looked at a different construction that
created C3, C4, C5-free graphs with arbitrarily high chromatic number. A natural question
you might ask is whether we can generalize this to find graphs with arbitrarily large girth1

and chromatic number!
In this section, we will develop Markov’s inequality, a remarkably useful tool, and show

how its application can give us (with relatively little effort, especially when compared to
constructive methods!) graphs of arbitrarily high girth and chromatic number.

Theorem 4. (Markov’s Inequality) For a random variable X and any positive constant a,
Pr(|X| > a) ≤ E(|X|)/a.

Solution. So: let I(|X|≥a) be the indicator random variable defined by

I(|X|≥a)(ω) =

{
1 |X(ω)| ≥ a,
0 otherwise.

Then, for any ω in Ω, we trivially have that a · I(|X|≥a)(ω) ≤ |X(ω)|; consequently, we
have

E(a · I(|X|≥a)) =
∑
ω∈Ω

a · I(|X|≥a)Pr(ω)

=
∑

ω∈Ω:|X(ω)|≥a

aPr(ω)

≤
∑

ω∈Ω:|X(ω)|≥a

|X(ω)|Pr(ω)

≤
∑
ω∈Ω

|X(ω)|Pr(ω)

= E(X).

1A graph has girth k if it contains a cycle of length k, and no smaller cycles. Cycle-free graphs
have“infinite” girth.
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However, on the other hand, we have

E(a · I(|X|≥a)) =
∑
ω∈Ω

a · I(|X|≥a)Pr(ω)

= a ·
∑

ω∈Ω:|X(ω)|≥a

Pr(ω)

= a · Pr(|X| ≥ a);

combining, we have Pr(|X| > a) ≤ E(|X|)/a.

So: with this theorem under our belt, we now have the tools to resolve the following
graph theory question (which otherwise is fairly hard to surmount:)

Theorem 5. There are graphs with arbitarily high girth and chromatic number.

Proof. So: let Gn,p denote a random graph on n vertices, formed by doing the following:

• Start with n vertices.

• For every pair of vertices {x, y}, flip a biased coin that comes up heads with probability
p and tails with probability 1 − p. If the coin is heads, add the edge {x, y} to our
graph; if it’s tails, don’t.

Our roadmap, then, is the following:

• For large n and well-chosen p, we will show that Gn,p will have relatively “few” short
cycles at least half of the time.

• For large n, we can also show that G will have high chromatic number at least half
the time.

• Finally, by combining these two results and deleting some vertices from our graph,
we’ll get that graphs with both high chromatic number and no short cycles exist in
our graph.

To do the first: fix a number l, and let X be the random variable defined by X(Gn,p) =
the number of cycles of length ≤ l in Gn,p.

We then have that

X(Gn,p) ≤
l∑

j=3

∑
allj−tuplesx1...xj

Nx1...xj ,

where Nx1...xj is the event that the vertices x1 . . . xj form a cycle.
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Then, we have that

E(X) ≤
l∑

j=3

∑
j−tuples x1...xj

Pr(Nx1...xj )

=
l∑

j=3

∑
j−tuples x1...xj

pj

=

l∑
j=3

njpj .

To make our sum easier, let p = nλ−1, for some λ ∈ (0, 1/l); then, we have that

E(X) =
l∑

j=3

njpj

=
l∑

j=3

njnjλ−j

=
l∑

j=3

njλ

<
nλ(l+1)

nλ − 1

=
nλl

1− n−λ

We claim that this is smaller than n/c, for any c and sufficiently large n. To see this, simply
multiply through; this gives you that

nλl

1− n−λ
< n/c

⇔nλl < n/c− n1−λ/c

⇔nλl + n1−λ/c < n/c

,

which, because both λl and 1− λ are less than 1, we know holds for large n.
So: to recap: we’ve shown that

E(|X|) < n/4.

So: what happens if we apply Markov’s inequality? Well: we get that

Pr(|X| ≥ n/2) ≤ E(|X|)
n/2

<
n/4

n/2
= 1/2;
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in other words, that more than half of the time we have relatively “few” short cycles! So
this is the first stage of our theorem.

Now: we seek to show that the chromatic number of our random graphs will be “large,”
on average. Doing this directly, by working with the chromatic number itself, would be
rather ponderous: as week two of our class showed, the chromatic number of a graph can
be a rather mysterious thing to calculate.

Rather, we will work with the independence number α(G) of our graph, the size
of the independent set of vertices2 in our graph. Why do we do this? Well, in a proper
k-coloring of a graph, each of the colors necessarily defines an independent set of vertices,
as there are no edges between vertices of the same color; ergo, we have that

χ(G) ≥ |V (G)|
α(G)

,

for any graph G.
So: to make the chromatic number large, it suffices to make α(G) small! So: look at

Pr(α(G) ≥ m), for some value m. We then have the following:

Pr(α(G) ≥ m) = Pr(there is a subset of G of size m with no edges in it)

≤
∑

S⊂V,|S|=m

Pr(there are no edges in S’s induced subgraph)

=

(
n

m

)
· (1− p)(

m
2 )

,

as there are
(
n
m

)
-many such subsets, and in order for there to be no edges in S’s subgraph

we need merely for all of the coin-flips that go into creating S to come up tails: i.e. this

happens (1− p)(
m
2 ) of the time.

So: note the following useful inequalities:

•
(
n
m

)
≤ nm. To see this, expand the binomial coefficient into the form n·...(n−m+1)

m! ,
discard the m!, and bound the m terms in the numerator by nm. It’s a awful bound,
but one that is really easy to work with!

• (1 − p) < e−p. There are a number of proofs of this, which can be regarded as a
simplified form of Bernoulli’s inequality; elementary calculus methods should suffice
to give this to you!

Applying both of these inequalities, we have that

Pr(α(G) ≥ m) < nm · e−p·(
m
2 )

= nm · e−p·m·(m−1)/2.

2Recall: a set of vertices is called independent if their induced subgraph has no edges. in it
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So: motivated by a desire to make the above simple, let m =
⌈

3
p ln(n)

⌉
. This then gives

us that

Pr(α(G) ≥ m) < nm · e−p·
⌈
3
p

ln(n)
⌉
·(m−1)/2

= nm · n−3(m−1)/2,

which goes to 0 as n gets large. So, in particular, we know that for large values of n and
any m, we have

Pr(α(G) ≥ m) < 1/2.

So: let’s combine our results! In other words, we’ve successfully shown that for large n,

Pr(G has more than (n/2)-many cycles of length ≤ l, orα(G) ≥ m) < 1.

So: for large n, there is a graph G so that neither of these things happen! Let G be such
a graph. G has less than n/2-many cycles of length ≤ l; so, from each such cycle, delete a
vertex. Call the resulting graph G′.

Then, we have the following:

• By construction, G′ has girth ≥ l.

• Also by construction, G′ has at least n/2 many vertices, as it started with n and we
deleted ≤ n/2.

• Deleting vertices doesn’t decrease the independence number of a graph! (If you’re not
sure why this is, look at the definition and work it out!) Thus, we have that

χ(G′) ≥ |V (G′)|
α(G′)

≥ n/2

α(G)

≥ n/2

3 ln(n)/p

=
n/2

3n1−λ ln(n)

=
nλ

6 ln(n)
,

which goes to infinity as n grows large.

So, for large n, this graph has arbitrarily large girth and chromatic number!
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