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Lecture 9: Infinite Random Graphs

Week 9 UCSB 2015

Before we start with the graph theory, we need to take a quick detour into the language
of probability: specifically, we need the concept of independence.

1 Probability Independent Events

Definition. For any two events A,B that occur with nonzero probability, define Pr(A
given B), denoted Pr(A|B), as the likelihood that A happens given that B happens as well.
Mathematically, we define this as follows:

Pr(A|B) =
Pr(A ∩B)

Pr(B)
.

In other words, we are taking as our probability space all of the events for which B happens,
and measuring how many of them also have A happen.

Definition. Take any two events A,B that occur with nonzero probability. We say that A
and B are independent if knowledge about A is useless in determining knowledge about
B. Mathematically, we can express this as follows:

Pr(A) = Pr(A|B).

Notice that this is equivalent to asking that

Pr(A) · Pr(B) = Pr(A ∩B).

Definition. Take any n events A1, A2, . . . An that each occur with nonzero probability. We
say that these n events are are mutually independent if knowledge about any of these
Ai events is useless in determining knowledge about any other Aj . Mathematically, we can
express this as follows: for any i1, . . . ik and j 6= i1, . . . ik, we have

Pr(Aj) = Pr(Aj |Ai1 ∩ . . . ∩Aik).

It is not hard to prove the following results:

Theorem. A collection of n events A1, A2, . . . An are mutually independent if and only if
for any distinct i1, . . . ik ⊂ {1, . . . n}, we have

Pr(Ai1 ∩ . . . ∩Aik) =
k∏

j=1

Aij .
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Theorem. Given any event A in a probability space Ω, let Ac = {ω ∈ Ω | ω /∈ A} denote
the complement of A.

A collection of n events A1, A2, . . . An are mutually independent if and only if their
complements {Ac

1, . . . A
c
n} are mutually independent.

We reserve the proofs of these results for the homework! We close by noting one partic-
ularly surprising non-result:

Non-theorem. Pairwise independence does not imply independence! In other words, it is
possible for a collection of events A1, . . . An to all be pairwise independent (i.e. Pr(Ai ∩
Aj) = Pr(Ai)Pr(Aj) for any i, j) but not mutually independent!

Example. There are many, many examples. One of the simplest is the following: consider
the probability space generated by rolling two fair six-sided dice, where any pair (i, j) of
faces comes up with probability 1/6.

Consider the following three events:

• A, the event that the first die comes up even.

• B, the event that the second die comes up even.

• C, the event that the sum of the two dice is odd.

Each of these events clearly has probability 1/2. Moreover, the probability of A∩B,A∩C
and B ∩ C are all clearly 1/4; in the first case we are asking that both dice come up even,
in the second we are asking for (even, odd) and in the third asking for (odd, even), all of
which happen 1/4 of the time. So these events are pairwise independent, as the probability
that any two happen is just the products of their individual probabilities.

However, A ∩ B ∩ C is impossible, as A ∩ B holds iff the sum of our two dice is even!
So Pr(A ∩ B ∩ C) = 0 6= Pr(A)Pr(B)Pr(C) = 1/8, and therefore we are not mutually
independent.

We use this to study the following property of random graphs:

2 The Rado Property

Definition. Let (‡) denote the Rado property of graphs: we say that a graph G satisfies
the property (‡) iff for any pair of finite disjoint subsets U,W ⊂ V (G), there is some
v ∈ V (G), v /∈ U ∪W , such that v has an edge to every vertex in U and to no vertices in
W .

Notice that no finite graph has this property, because we could just make U equal to
all of G, and we would be unable to find any v /∈ U . But what if we considered an infinite
random graph?

Definition. Take N vertices {vi}∞i=1. For each pair of vertices vi, vj , flip a coin that comes
up heads half of the time and tails the other half of the time, and connect vi to vj with an
edge if and only if our coin came up heads.

We call the result of this process a random graph on N vertices with respect to
the uniform distribution, and denote this as GN,1/2 for shorthand.
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Given this definition, we have the following rather remarkable result:

Theorem 1. If G is a random graph of the form GN,p, for p 6= 0, 1, then G satisfies (‡)
with probability 1.

Proof. Choose any pair of finite disjoint subsets U,W in V (G). Then, for any vertex v ∈
V (G), v /∈ U ∪W , let Av be the event that v is connected to all of U and none of W . Then,
we have that

Pr(Av) = p|U | · (1− p)|V | > 0.

Notice that for any collection {v1, . . . vk} of distinct vertices, all of these eventsAv1 , . . . Avn

are independent: this is because the coinflips used to determine any Avi do not matter for
any other Avj , and therefore that Pr(Avi) = Pr(Avi |Avj1

∩ . . . ∩Avjl
) for any i 6= j1, . . . jl.

Consequently, by our theorem earlier, the complements of these events Ac
v1 , . . . A

c
vk

are
also independent!

Because the probability that Av doesn’t happen plus the probability that Av does
happen must sum to 1, we then know that for any v,

Pr(not Av) = 1− p|U | · (1− p)|V | = λ < 1,

for some constant λ ∈ (0, 1).
Thus, by independence, we know that the probability of k different vertices v1, . . . vk all

with Avi failing to hold is λk, which goes to 0 as k increases! So we can specifically bound
this probability above by ε, for any ε > 0, by simply looking at enough vertices.

Now, note that there are only countably many pairs of finite disjoint subsets of N
(prove this if you don’t see why!) Consequently, we can enumerate all such pairs in a list
{(Ui,Wi)}∞i=1, and bound the probability of (Ui,Wi) failing to have a vertex that hits all of
Ui and none of Wi by ε/2i, for every i. Then, the probability of any of these events failing
is bounded above by the sum

∞∑
n=1

ε

2n
= ε;

so thie probability of our graph satisfying property (‡) is greater than 1− ε, for any ε > 0;
i.e. the probability of our graph satisfying this property is 1! So, almost every random
graph satisfies property (‡).

So: the probabilistic method is a fantastically useful way to show the existence of graphs
with certain properties! However, it’s not so great for actually providing concrete examples
of such graphs; typically, an application of probabilistic ideas will only tell you that most
graphs have your property, not what one such graph might actually look like.

In the light of the above comments, it’s interesting to note that we can actually construct
a graph that satisfies (‡)! In fact, consider the following construction:

Definition. The Rado graph is the following graph:
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(Shamelessly stolen from Wikipedia.)

• Start by defining R0 = K1, the graph with a single vertex.

• If Rk is defined, let Rk+1 be defined by the following: take Rk, and add a new vertex
vU for every possible subset U of Rk’s vertices. Now, add an edge from vU to every
element in U , and to no other vertices in Rk.

• Let R = ∪∞k=1Rk.

We claim that this is a graph on N-many vertices that satisfies property (‡). To see why:
pick any two finite disjoint subsets U, V of V (R). Because each vertex of R lives in some
Rk, we know that there is some value n such that U, V are both in fact subsets of Rn, as
there are only finitely many elements in U ∪ V . Then, by construction, we know that there
is a vertex vU in Rn+1 with an edge to every vertex in U and to none in V .

We close our study of (‡) with the following proposition:

Proposition 2. Any two graphs that satisfy (‡) are isomorphic1.

Proof. To see this, take any two graphs G = (V,E), G′ = (V ′, E′) on N-many vertices that
satisfy (‡); we will exhibit an isomorphism φ”V → V ′ between them.

To do this: fix some ordering {vi}∞i=1 of V ’s vertices, and do the same for V ′. We start
with φ undefined for any values of V , and construct φ via the following back-and-forth
process:

• At odd steps:

– Let v be the first vertex under V ’s ordering that we haven’t defined φ on, and

– let U be the collection of all of v’s neighbors in V that we currently have defined
φ on.

– By (‡), we know that there is a v′ ∈ V ′ such that v′ is adjacent to all of the
vertices in φ(U) and no other yet-defined vertices in V ′ that φ hits yet (as both
sets are stil finite.)

1We say that two graphs G1, G2 are isomorphic if there is a bijection ϕ : V (G1) → V (G2), such that
{x, y} is an edge in G1 if and only if {ϕ(x), ϕ(y)} is an edge in G2. In other words, there is a way to “relabel”
the vertices of G1 so that it looks like G2: i.e. G1 and G2 are the “same,” up to isomorphism.
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• At even steps: do the exact same thing as above, except switch V and V ′.

So, in other words, we’re starting with φ totally undefined; at our first step, we’re then
just taking φ and saying that it maps v1 ∈ V to some element in V ′. Then, at our second
step, we’re taking the smallest element in V ′ that’s not φ(v1), and mapping it to some
element w that either does or does not share an edge with v, depending on whether φ(w)
and φ(v) share an edge.

By repeating this process, we eventually get a map φ that’s defined on all of V, V ′; we
claim that such a map is an isomorphism.

φ is clearly a bijection, as it hits every vertex exactly once by definition; so it suffices to
prove that it preserves edges.

To see why this is true: take any edge {u, v} in V , and assume (WLOG) that φ was
defined on u before it defined on v. Then, when we defined φ(u), we did it in only one of
two ways:

• We defined φ(u) at an odd stage. In this case, when we defined φ(u), we defined φ(u)
so that it would be adjacent to all of u’s neighbors that we’ve already defined φ on –
i.e. v! So we know that {φ(u), φ(v)} is an edge.

• We defined φ(u) at an even stage. In this case, we again picked u so that, amongst the
already-mapped-to elements of V , it would be adjacent to only those elements w ∈ V
so that {φ(u), φ(v)} are adjacent! So, because {u, v} is an edge, so is {φ(u), φ(v)}.

As φ is a bijection, the above logic easily goes the other way: so {u, v} is an edge in E iff
{φ(u), φ(v)} is an edge in E′. Consequently, we have that φ is an isomorphism!

Combining our results gives us the following rather surprising result:

Corollary 3. With probability 1, any two random graphs are isomorphic.

(... wait, what?)
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