Homework 13: Filling Space

Due Thursday, Week 7, at the start of class. UCSB 2014

These are three problems I once received in the same set in undergraduate; they're three of my favorite problems, and I've been waiting all quarter for the ability to give you them as a set.

Solve one of the following three problems. As always, prove your claims! (And have fun!)

0 . Solve any un-signed-up-for problems from HW\#12!

1. A \mathbf{t}-shape is any pair of straight closed line segments in \mathbb{R}^{2} that intersect at exactly one point, with this intersection not occurring at an endpoint of one of these line segments.
A covering of \mathbb{R}^{2} by disjoint t-shapes is any collection of t-shapes such that every point of \mathbb{R}^{2} is in exactly one t-shape.
Can such a covering exist?
2. A circle in \mathbb{R}^{2} is exactly what you think it is: the collection of all points that are exactly distance r away from some point (a, b) in space, for some value $r>0$ and point (a, b). Note that r needs to be strictly positive, as a single point is not typically considered as a "circle."
Is it possible to create a covering of \mathbb{R}^{2} by disjoint circles?
3. The concepts of circles and coverings both make sense in \mathbb{R}^{3} as well. A circle in \mathbb{R}^{3} given by a point (a, b, c), a plane passing through this point, and a distance $r>0$ is just all of the points that are distance r from (a, b, c) and contained within our plane. Again, note that r needs to be strictly positive, as a single point is not typically considered as a "circle."
Similarly, a covering of \mathbb{R}^{3} by disjoint circles is just any collection of disjoint circles such that every point in \mathbb{R}^{3} is in exactly one circle.
Can such a covering exist?
