## Homework 2: Induction/Recursion

Due Thursday, Week 1, at the start of class.
UCSB 2014

Solve one of the following three problems. As always, prove your claims!
0 . Do any of the problems that no-one solved on the previous set!

1. Let $S$ be a set of $n$ distinct real numbers. Suppose that $A_{S}$ is the collection of all of the values given by averaging two distinct elements in $S$; that is,

$$
A_{S}=\left\{\left.\frac{x+y}{2} \right\rvert\, x, y \in S, x \neq y\right\} .
$$

For example, if $S=\{1,3,5,7\}$, we have $A_{S}=\{2,3,4,5,6\}$; alternately, if $S=$ $\{1,2,3,5\}$, we have $A_{S}=\{1.5,2,2.5,3,3.5,4\}$.
For any given $n \in \mathbb{N}$, what is the smallest possible size for the set $A_{S}$ ?
2. Take any $n \in \mathbb{N}$ that is greater than zero. A pleasant decomposition ${ }^{1}$ of $n$ is any way in which we can write $n$ as the sum $a_{1}+\ldots+a_{k}$ of positive integers, for arbitrary $k$, such that

- $a_{1} \leq a_{2} \leq a_{3} \leq \ldots a_{k}$, and
- $a_{k} \leq a_{1}+1$.

For example, $n=5$ has five different pleasant decompositions:

$$
\begin{aligned}
5 & =5, \\
& =2+3, \\
& =1+2+2, \\
& =1+1+1+2, \text { and } \\
& =1+1+1+1+1 .
\end{aligned}
$$

For any given $n \in \mathbb{N}$, how many pleasant decompositions does $n$ have?
3. Take any positive rational number $p / q$. Show that we can write $p / q$ as the quotient of products of factorials of prime numbers (where these primes may be repeated.) For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!}
$$

[^0]
[^0]:    ${ }^{1}$ I made this term up!

