Homework 6: Polynomials

Due Thursday, Week 3, at the start of class. UCSB 2014

Solve one of the following three problems. As always, prove your claims!
The theme for these problems: polynomials! Sometimes, a problem will boil down to being able to manipulate algebraic expressions until they look like something useful. These three problems involve this task!

0 . Solve any un-signed-up-for problems from HW\#5!

1. Take any integer n. Show that we can write n as the sum of 5 perfect cubes.
(For example: $1=1^{3}-1^{3}+1^{3}-1^{3}+1^{3} ; 2=0^{3}+2^{3}+(-2)^{3}+1^{3}+1^{3}$. There can be many different ways to write any n as such a sum.)
2. Suppose that $f(x)$ is a polynomial with integer coefficients; moreover, suppose that $f(a)=f(b)=f(c)=-1$, for three distinct integers a, b, c. Prove that there is no integer d such that $f(d)=0$.
3. (An old USAMO problem.) Consider the equation

$$
x^{4}-18 x^{3}+k x^{2}+200 x-1984=0 .
$$

Because this is a degree- 4 polynomial, it has four roots a, b, c, d (where some of these roots may be repeated; i.e. $x^{2}-2 x+1=0$ has the root $x=1$ repeated twice.) Suppose that you know that $a b=-32$. Find k.

