Homework 7: Inequalities (Triangle, AMGM, $x^{2} \geq 0$)

Due Tuesday, Week 4, at the start of class.

Solve three of the following six problems. As always, prove your claims!
The theme for these problems: algebraic inequalities! There are many useful algebraic inequalities that come up all the time when solving problems. We list three commonlyoccuring ones here:

- For any real number $x, x^{2} \geq 0$. This can be generalized slightly: if x, y are two numbers with the same sign, then $x y \geq 0$.
- (Triangle inequality ${ }^{1}$.) Take any three points $\vec{x}=\left(x_{1}, \ldots x_{n}\right), \vec{y}=\left(y_{1}, \ldots y_{n}\right), \vec{z}=$ $\left(z_{1}, \ldots z_{n}\right) \in \mathbb{R}^{n}$. Then the distance ${ }^{2} d(\vec{x}, \vec{y})$ from \vec{x} to \vec{y} is bound above by the sum $d(\vec{x}, \vec{z})+d(\vec{z}, \vec{y})$.
- (Arithmetic mean-geometric mean inequality, i.e. AM-GM.) The arithmetic mean of n nonnegative real numbers is bounded below by their geometric mean. In other words, for any nonnegative numbers $x_{1}, \ldots x_{n} \in \mathbb{R}$, we have the following inequality:

$$
\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \ldots x_{n}}
$$

Try using them to solve some of the problems below, and have fun!
0. Solve any un-signed-up-for problems from HW\#6!

1. Take any three positive real numbers x, y, z. Suppose that for any positive integer n, there is a triangle with side lengths x^{n}, y^{n}, z^{n}. Prove that at least two of the values in $\{x, y, z\}$ are equal.
2. Prove the AM-GM inequality. (If you do this problem, do not use Wikipedia/texts, as they will likely contain the solution.)
3. Suppose that x, y, z are the three side lengths of a triangle with perimeter 2 . Show that

$$
1<x y+y z+z x-x y z \leq \frac{28}{27} .
$$

4. Let $a_{1}, a_{2}, \ldots a_{n}$ and $b_{1}, b_{2}, \ldots b_{n}$ denote two lists of nonnegative real numbers. Show that

$$
\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)^{1 / n}+\left(b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}\right)^{1 / n} \leq\left(\left(a_{1}+b_{1}\right) \cdot\left(a_{2}+b_{2}\right) \cdot \ldots \cdot\left(a_{n}+b_{n}\right)\right)^{1 / n} .
$$

[^0]5. Suppose that a, b, c are three real numbers such that $|a-b| \geq|c|,|b-c| \geq|a|$ and $|c-a| \geq|b|$. Prove that one of these three numbers is equal to the sum of the other two.
6. Find 3
$$
\min _{a, b \in \mathbb{R}}\left(\max \left(\left(a^{2}+b, b^{2}+a\right)\right)\right) .
$$

Prove that your claimed minimum is correct.
${ }^{3}$ If you haven't seen this before: the notation

$$
\min _{x \in A} f(x)
$$

just means "the minimum value that $f(x)$ can attain on the set A. For example, the minimum value that $(x-1)^{2}$ can attain on \mathbb{N} is 0 ; therefore, we would write $\min _{x \in \mathbb{N}} x^{2}=0$. The expression max denotes maximum in the same way.

[^0]: ${ }^{1}$ We call this the triangle inequality because geometrically, it is the following statement: the sum of the lengths of two sides of a triangle is never shorter than the length of the triangle's third side.
 ${ }^{2}$ If you haven't seen this before: the distance from $\left(x_{1}, \ldots x_{n}\right)$ to $\left(y_{1}, \ldots y_{n}\right)$ is the quantity

