CCS Problem-Solving I Professor: Padraic Bartlett Homework 8: Operations on Sets

Due Thursday, W	eek 4, at the start of class.	$UCSB \ 2014$
-----------------	-------------------------------	---------------

Solve one of the following three problems. As always, prove your claims!

The theme for these problems: **binary operations** on sets! Specifically: a **binary operation** on a set S is any map that takes elements of $S \times S$ to S; addition, multiplication, exponentiation, the binomial coefficient and other objects are all examples of such operations on \mathbb{N} , for example. Often, we will want to study properties of such maps.

For example, suppose that that I gave you a binary operation \cdot on a set S with the following two properties:

- Identity: There is a unique element $e \in S$ such that $e \cdot x = x \cdot e = x$, for all $x \in S$.
- Inverses: For any $x \in S$, there is a unique $x^{-1} \in S$ such that $x \cdot x^{-1} = x^{-1} \cdot x = e$.
- Annihilator:¹ There is a unique element $n \in S$ such that $n \cdot x = x \cdot n = n$, for all $n \in S$.

What could you tell me about S? Well: look at our annihilating element n. By inverses, we know that there is an element n^{-1} such that $n^{-1}n = nn^{-1} = e$. But, by definition, we also know that $n^{-1}n = n$, because n is an annihilating element. Therefore, we have n = e. But we know that for any $x \in S$, we have $e \cdot x = x$, and that for any $x \in S$, we have $n = n \cdot x$; consequently, because n = e, we have n = x for any x. In other words, our group S consists of only one element, n!

This is the kind of thing these problems study: given an operation with some simple properties, what can you conclude?

- 0. Solve any un-signed-up-for problems from HW#6!
- 1. Let \star be a binary operation on the set S that satisfies the following three properties:
 - Commutative: $\forall a, b \in S, a \star b = b \star a$.
 - Associative: $\forall a, b, c \in S, a \star (b \star c) = (a \star b) \star c.$
 - Delicious²: $\forall a, b \in S, \exists z \in S \text{ such that } a \star z = b.$

Prove that \star satisfies the following **cancellation** property:

- Cancellation: if $a, b, c \in S$ and $a \star c = b \star c$, then a = b.
- 2. Take any set S and any binary operation \clubsuit on S. Suppose that \clubsuit satisfies the following property:
 - Tartan³: For all $a, b \in S$, we have $(a \clubsuit b) \clubsuit a = b$.

¹I did not make this term up.

²I did make this term up!

³I also made this term up!

Prove that \clubsuit also satisfies the following property:

- **Plaid**⁴: For all $a, b \in S$, we have $a \clubsuit (b \clubsuit a) = b$.
- 3. Take any set S and any binary operation * on S that satisfies the following properties:
 - Associative: $\forall a, b, c \in S, a * (b * c) = (a * b) * c.$
 - **Dubious**: For any $a, b \in S$, we have $a * b = b * a \Rightarrow a = b$.

Show that it satisfies the following property:

• **Poisonous**: For any $a, b, c \in S$, we have a * (b * c) = a * c.

Can you find an example of such an operation on $\mathbb{N}?$

⁴Really, if it looks ridiculous, I probably made it up.