Homework 8: Operations on Sets

Due Thursday, Week 4, at the start of class.
UCSB 2014

Solve one of the following three problems. As always, prove your claims!
The theme for these problems: binary operations on sets! Specifically: a binary operation on a set S is any map that takes elements of $S \times S$ to S; addition, multiplication, exponentiation, the binomial coefficient and other objects are all examples of such operations on \mathbb{N}, for example. Often, we will want to study properties of such maps.

For example, suppose that that I gave you a binary operation • on a set S with the following two properties:

- Identity: There is a unique element $e \in S$ such that $e \cdot x=x \cdot e=x$, for all $x \in S$.
- Inverses: For any $x \in S$, there is a unique $x^{-1} \in S$ such that $x \cdot x^{-1}=x^{-1} \cdot x=e$.
- Annihilator: ${ }^{1}$ There is a unique element $n \in S$ such that $n \cdot x=x \cdot n=n$, for all $n \in S$.

What could you tell me about S ? Well: look at our annihilating element n. By inverses, we know that there is an element n^{-1} such that $n^{-1} n=n n^{-1}=e$. But, by definition, we also know that $n^{-1} n=n$, because n is an annihilating element. Therefore, we have $n=e$. But we know that for any $x \in S$, we have $e \cdot x=x$, and that for any $x \in S$, we have $n=n \cdot x$; consequently, because $n=e$, we have $n=x$ for any x. In other words, our group S consists of only one element, n !

This is the kind of thing these problems study: given an operation with some simple properties, what can you conclude?

0 . Solve any un-signed-up-for problems from HW\#6!

1. Let \star be a binary operation on the set S that satisfies the following three properties:

- Commutative: $\forall a, b \in S, a \star b=b \star a$.
- Associative: $\forall a, b, c \in S, a \star(b \star c)=(a \star b) \star c$.
- Delicious ${ }^{2}: ~ \forall a, b \in S, \exists z \in S$ such that $a \star z=b$.

Prove that \star satisfies the following cancellation property:

- Cancellation: if $a, b, c \in S$ and $a \star c=b \star c$, then $a=b$.

2. Take any set S and any binary operation \& on S. Suppose that \& satisfies the following property:

- Tartan ${ }^{3}$: For all $a, b \in S$, we have $(a \boldsymbol{\omega}) a=b$.

[^0]Prove that $\&$ also satisfies the following property:

- Plaid ${ }^{4}$: For all $a, b \in S$, we have $a \boldsymbol{\leftrightarrow}(b \boldsymbol{\Omega} a)=b$.

3. Take any set S and any binary operation $*$ on S that satisfies the following properties:

- Associative: $\forall a, b, c \in S, a *(b * c)=(a * b) * c$.
- Dubious: For any $a, b \in S$, we have $a * b=b * a \Rightarrow a=b$.

Show that it satisfies the following property:

- Poisonous: For any $a, b, c \in S$, we have $a *(b * c)=a * c$.

Can you find an example of such an operation on \mathbb{N} ?

[^1]
[^0]: ${ }^{1}$ I did not make this term up.
 ${ }^{2}$ I did make this term up!
 ${ }^{3}$ I also made this term up!

[^1]: ${ }^{4}$ Really, if it looks ridiculous, I probably made it up.

