Homework 9: Number Theory (Basic)

Due Tuesday, Week 5, at the start of class.

Solve three of the following six problems. As always, prove your claims!
0 . Solve any un-signed-up-for problems from HW\#6!

1. (IMO, 1975.) Let $f(n)$ denote the function that sends n to the sum of its decimal digits. For example, $f(746)=7+4+6=17$. Find

$$
f\left(f\left(f\left(4444^{4444}\right)\right)\right) .
$$

Hint: mod 9 may be useful.
2. Fix any positive integer k. Consider the following sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, defined recursively:

- $a_{1}=1$.
- a_{n} is the n-th positive integer that is greater than a_{n-1} that is also congruent to $n \bmod k$.

For example, if $k=2$, we would get the sequence

$$
1,4,9,16, \ldots
$$

because

- 4 is the second positive integer greater than 1 that is congruent to $2 \bmod 2$,
- 9 is the third positive integer greater than 4 that is congruent to $3 \bmod 2$,
- 16 is the fourth positive integer greater than 9 that is congruent to $4 \bmod 2, \ldots$

For arbitrary k, find a closed formula for a_{n}.
3. Prove that there are unique positive integers a, n such that

$$
a^{n+1}-(a+1)^{n}=2001 .
$$

(Hint: if you can just show that a is unique, then n 's uniqueness will follow immediately. To get that a is unique: try rewriting the above expression slightly, and use that to get information about a !)
4. Find all functions $g: \mathbb{N} \rightarrow \mathbb{N}$ that satisfy the following property:

$$
\forall n \in \mathbb{N}, g(n)+2 \cdot(g(g(n)))=3 n+5 .
$$

5. (USAMO, 1979) Find all of the non-negative integer solutions $\left(x_{1}, \ldots x_{14}\right) \in \mathbb{N}^{14}$ to the equation

$$
n_{1}^{4}+n_{2}^{4}+n_{3}^{4}+\ldots+n_{14}^{4}=1599
$$

6. Prove that there are infinitely many primes of the form $4 n-1$, where n is an integer.
