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In Stephen Wolfram’s book, A New Kind of Science, he postulates that the world as
we know it and all its complexities is just a simple Sequential Dynamical System that is
governed by a very simple set of rules. All of Physics, all of Biology, all of Mathematics
are interlinked through those simple rules. Now, that seems just absolutely absurd and
downright crazy. How can such a simple set of rules form the complex theories of Math-
ematics and Physics and the seemingly random processes of Biology? This week, we will
examine the field that Wolfram himself forged and look at how simple rules can lead to very
complicated structures. This field is called Cellular Automata.

Now, what exactly is Cellular Automata? Cellular Automata, or CA1, has several fea-
tures that are similar to the features of an SDS. These are traits that they share:

1. There is a collection of vertices that are from the set V .

2. There is a set, S, that characterizes the states of said vertices. For most CA, that set
is S = {0, 1}. Those are the simplest of states and the ones that we will be working
with the most in this class.

3. There is a defined function fv that interacts with the vertices to output a new vertex
or update an older one.

From there, differences start to arise between the two. Those differences include

1. Unlike SDS, CA always updates simultaneously. As in, each vertex updates at the
same time. Each update is usually seen as one time step forward and thus the system
evolves in discrete time steps.

2. CA usually consists of uniform structure2, and as a result, all graphs that define a CA
are always regular graphs. For example, Zk where k > 1. This produces the simple
geometric grid that everyone knows and loves when k = 2.

3. The edges of the graph form neighborhoods with all adjacent vertices. In general, we
define a neighborhood, n[v], as follows:

1This abbreviation is the accepted shorten for Cellular Automata
2This is intended because it includes translation invariance. Which implies that, at least in one direction,

the object is infinite. As in, for any point p, the set of points with the same properties due to translational
symmetry form the infinite discrete set {p + na|n ∈ Z} = p + Za (Wikipedia [4]).
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We take a sequence N and define it as N = (d1, ..., dm), where di ∈ Y and Y is our
strongly regular graph. Then define n[v] to be

n[v] = v + N = (v + d1, ..., v + dm).

In short, take whatever grid structure your Graph, Y , and let the neighbors of v be
what you think they are. Just the points on the grid surrounding vertex v. That’s your
neighborhood in Z2. However, changes can be brought to this definition that allow
for a different idea of neighborhoods. The two most commonly used definitions are
the von Neumann neighborhood and the Moore neighborhood. To put them simply,
the von Neumann neighborhood for a basic grid structure in Z2 is the center box and
then the boxes that border its sides. Only those 5 boxes constitute the neighborhood.
And the Moore neighborhood is the von Neumann neighborhood with the addition of
the corner boxes. So it forms a 3X3 grid of boxes that is made up of 9 squares.

Figure 1: (a) is the von Neumann neighborhood and (b) is the Moore neighborhood.

Those are the main similarities and differences between CA and SDS (Wolfram [2]). From
here, we will continue to work with CA but only in the simplest cases (most likely for the
rest of the quarter). The simplest of CA actually have a formal name. They are called the
Elementary CA.

These are the following rules to Elementary CA:

1. Our graph will be Z2. In this graph, each box will belong to our set of vertices V .
And the states of each vertex is in S and S = {0, 1}.

2. Our function f will map the following

f : F3
2 → F2

where F2 = {0, 1}. In layman’s terms, we are taking a string of length 3 that has a
combination of 1’s and 0’s in it and mapping it to either a 1 or a 0.

3. Our neighborhoods will consist of a vertex, v, and the vertices to the right and to the
left. Only 3 blocks will belong to each neighborhood.
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Those are the rules to Elementary CA (Mortveit [1]). Now, some may ask how many dif-
ferent configurations are there for Elementary CA and how can we possible name each one
in an organized manner? Well I will show you.

Claim: There are 256 possible CA configurations that follow the Elementary rules.

Proof : This is actually quite trivial. We know that we get to choose if there is a 1 or
a 0 for the mapping so we have 2 choices but how many things are we mapping. In short,
we are doing the following

# of configurations = |F2||F
3
2| = 28 = 256.

We have 8 times where we have to decide if its a 1 or a 0 so that would be 28. 2

Figure 2: If you had difficulty following the proof above, here is a simple visual aid that can help.
We have eight possible states of the three blocks in the top portion and then we assign an output to
each of those states. This particular set is called Rule 30.

Now, is there a numbering system that can give a number to each configuration? Well, yes
there is. Stephen Wolfram developed the method for this. He did this by converting the
binary string of the eight new boxes into decimal. First, we define x to be the string of 3
digits in F3

2. Then, we let f at x be ak for 0 ≤ k ≤ 7. And finally we can define another
function r that will convert f into a decimal number.

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000

f a7 a6 a5 a4 a3 a2 a1 a0

r(f) =

7∑
i=0

ai2
i

That equation he found will enumerate each of the 256 Elementary rules. Let’s go through
an example of this enumeration though.

Example: What is the number for the following table?

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000

f 0 1 1 0 1 1 1 0

For this example, all we need to do is just plug into the equation.

r(f) =

7∑
i=0

ai2
i = 0× 27 + 1× 26 + 1× 25 + 0× 24 + 1× 23 + 1× 22 + 1× 21 + 0× 20 = 110
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And thus this is Rule 110. This rule in particular is quite famous because it is one of the
well known class 4 Cellular Automata and is also known to be Turing Complete3. Now,
what is ”class 4” and why does this even matter? Well, Elementary CA and CA in general
can be classified into 4 distinct categories based on complexity (Wikipedia [2]):

1. Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state.
Any randomness in the initial pattern disappears.

2. Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures.
Some of the randomness in the initial pattern may filter out, but some remains. Local
changes to the initial pattern tend to remain local.

3. Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Any
stable structures that appear are quickly destroyed by the surrounding noise. Local
changes to the initial pattern tend to spread indefinitely.

4. Class 4: Nearly all initial patterns evolve into structures that interact in complex and
interesting ways, with the formation of local structures that are able to survive for
long periods of time. Class 2 type stable or oscillating structures may be the eventual
outcome, but the number of steps required to reach this state may be very large, even
when the initial pattern is relatively simple. Local changes to the initial pattern may
spread indefinitely. Wolfram has conjectured that many, if not all class 4 cellular
automata are capable of universal computation. This has been proven for Rule 110
and Conway’s game of Life.

Class 4 is the meat that CA research takes part in. Strange things start to arise out of
patterns that logic assumes that simple patterns will eventually occur, but none never do.

With that stated, that is the end of these notes for this week. The next few pages will
all contain a few images of rules and their visual outcomes when processed a several gener-
ations forward (Wolfram [5]).
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