Cellular Automata

Nicholas Geis

January 22, 2015

In Stephen Wolfram's book, A New Kind of Science, he postulates that the world as we know it and all its complexities is just a simple Sequential Dynamical System that is governed by a very simple set of rules. All of Physics, all of Biology, all of Mathematics are interlinked through those simple rules. Now, that seems just absolutely absurd and downright crazy. How can such a simple set of rules form the complex theories of Mathematics and Physics and the seemingly random processes of Biology? This week, we will examine the field that Wolfram himself forged and look at how simple rules can lead to very complicated structures. This field is called Cellular Automata.

Now, what exactly is Cellular Automata? Cellular Automata, or CA¹, has several features that are similar to the features of an SDS. These are traits that they share:

- 1. There is a collection of vertices that are from the set V.
- 2. There is a set, S, that characterizes the states of said vertices. For most CA, that set is $S = \{0, 1\}$. Those are the simplest of states and the ones that we will be working with the most in this class.
- 3. There is a defined function f_v that interacts with the vertices to output a new vertex or update an older one.

From there, differences start to arise between the two. Those differences include

- 1. Unlike SDS, CA always updates simultaneously. As in, each vertex updates at the same time. Each update is usually seen as one time step forward and thus the system evolves in discrete time steps.
- 2. CA usually consists of uniform structure², and as a result, all graphs that define a CA are always regular graphs. For example, \mathbb{Z}^k where k > 1. This produces the simple geometric grid that everyone knows and loves when k = 2.
- 3. The edges of the graph form neighborhoods with all adjacent vertices. In general, we define a neighborhood, n[v], as follows:

¹This abbreviation is the accepted shorten for Cellular Automata

²This is intended because it includes translation invariance. Which implies that, at least in one direction, the object is infinite. As in, for any point **p**, the set of points with the same properties due to translational symmetry form the infinite discrete set $\{\mathbf{p} + n\mathbf{a}|n \in \mathbb{Z}\} = \mathbf{p} + \mathbb{Z}\mathbf{a}$ (Wikipedia [4]).

We take a sequence N and define it as $N = (d_1, ..., d_m)$, where $d_i \in Y$ and Y is our strongly regular graph. Then define n[v] to be

$$n[v] = v + N = (v + d_1, ..., v + d_m).$$

In short, take whatever grid structure your Graph, Y, and let the neighbors of v be what you think they are. Just the points on the grid surrounding vertex v. That's your neighborhood in \mathbb{Z}^2 . However, changes can be brought to this definition that allow for a different idea of neighborhoods. The two most commonly used definitions are the von Neumann neighborhood and the Moore neighborhood. To put them simply, the von Neumann neighborhood for a basic grid structure in \mathbb{Z}^2 is the center box and then the boxes that border its sides. Only those 5 boxes constitute the neighborhood. And the Moore neighborhood is the von Neumann neighborhood with the addition of the corner boxes. So it forms a 3X3 grid of boxes that is made up of 9 squares.

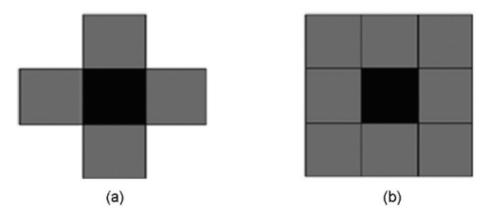


Figure 1: (a) is the von Neumann neighborhood and (b) is the Moore neighborhood.

Those are the main similarities and differences between CA and SDS (Wolfram [2]). From here, we will continue to work with CA but only in the simplest cases (most likely for the rest of the quarter). The simplest of CA actually have a formal name. They are called the Elementary CA.

These are the following rules to Elementary CA:

- 1. Our graph will be \mathbb{Z}^2 . In this graph, each box will belong to our set of vertices V. And the states of each vertex is in S and $S = \{0, 1\}$.
- 2. Our function f will map the following

$$f : \mathbb{F}_2^3 \to \mathbb{F}_2$$

where $\mathbb{F}_2 = \{0, 1\}$. In layman's terms, we are taking a string of length 3 that has a combination of 1's and 0's in it and mapping it to either a 1 or a 0.

3. Our neighborhoods will consist of a vertex, v, and the vertices to the right and to the left. Only 3 blocks will belong to each neighborhood.

Those are the rules to Elementary CA (Mortveit [1]). Now, some may ask how many different configurations are there for Elementary CA and how can we possible name each one in an organized manner? Well I will show you.

Claim: There are 256 possible CA configurations that follow the Elementary rules.

Proof: This is actually quite trivial. We know that we get to choose if there is a 1 or a 0 for the mapping so we have 2 choices but how many things are we mapping. In short, we are doing the following

of configurations = $|\mathbb{F}_2|^{|\mathbb{F}_2^3|} = 2^8 = 256.$

We have 8 times where we have to decide if its a 1 or a 0 so that would be 2^8 . \Box

Figure 2: If you had difficulty following the proof above, here is a simple visual aid that can help. We have eight possible states of the three blocks in the top portion and then we assign an output to each of those states. This particular set is called Rule 30.

Now, is there a numbering system that can give a number to each configuration? Well, yes there is. Stephen Wolfram developed the method for this. He did this by converting the binary string of the eight new boxes into decimal. First, we define x to be the string of 3 digits in \mathbb{F}_2^3 . Then, we let f at x be a_k for $0 \le k \le 7$. And finally we can define another function r that will convert f into a decimal number.

(x_{i-1}, x_i, x_{i+1})	111	110	101	100	011	010	001	000		
f	a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0		
$r(f) = \sum a_i 2^i$										
$i{=}0$										

That equation he found will enumerate each of the 256 Elementary rules. Let's go through an example of this enumeration though.

Example: What is the number for the following table?

(x_{i-1}, x_i, x_{i+1})	111	110	101	100	011	010	001	000
f	0	1	1	0	1	1	1	0

For this example, all we need to do is just plug into the equation.

$$r(f) = \sum_{i=0}^{7} a_i 2^i = 0 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 110$$

And thus this is Rule 110. This rule in particular is quite famous because it is one of the well known class 4 Cellular Automata and is also known to be Turing Complete³. Now, what is "class 4" and why does this even matter? Well, Elementary CA and CA in general can be classified into 4 distinct categories based on complexity (Wikipedia [2]):

- 1. Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Any randomness in the initial pattern disappears.
- 2. Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Some of the randomness in the initial pattern may filter out, but some remains. Local changes to the initial pattern tend to remain local.
- 3. Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Any stable structures that appear are quickly destroyed by the surrounding noise. Local changes to the initial pattern tend to spread indefinitely.
- 4. Class 4: Nearly all initial patterns evolve into structures that interact in complex and interesting ways, with the formation of local structures that are able to survive for long periods of time. Class 2 type stable or oscillating structures may be the eventual outcome, but the number of steps required to reach this state may be very large, even when the initial pattern is relatively simple. Local changes to the initial pattern may spread indefinitely. Wolfram has conjectured that many, if not all class 4 cellular automata are capable of universal computation. This has been proven for Rule 110 and Conway's game of Life.

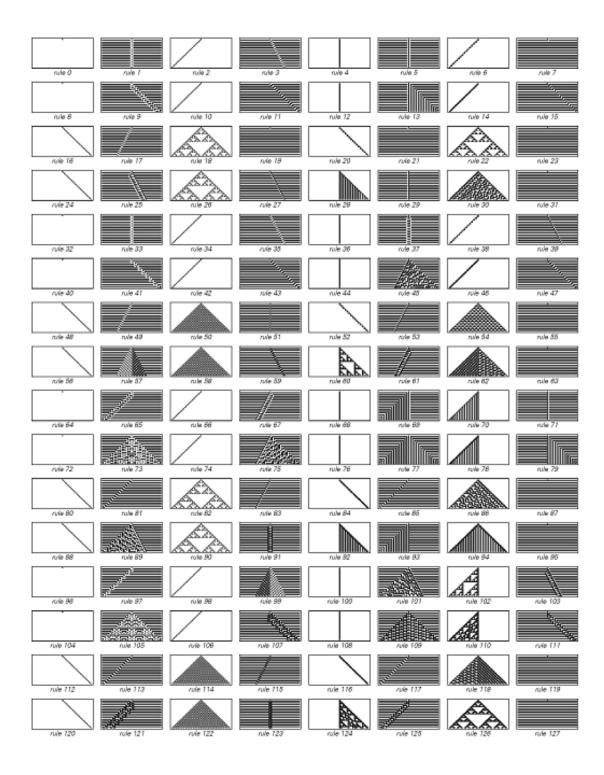
Class 4 is the meat that CA research takes part in. Strange things start to arise out of patterns that logic assumes that simple patterns will eventually occur, but none never do.

With that stated, that is the end of these notes for this week. The next few pages will all contain a few images of rules and their visual outcomes when processed a several generations forward (Wolfram [5]).

References

- H. S. Mortveit and C. M. Reidys, An Introduction to Sequential Dynamical Systems, Springer Science+Business Media LLC, New York, 2008.
- [2] http://en.wikipedia.org/wiki/Cellular_automaton. Wikipedia, January 20, 2015.
- [3] http://en.wikipedia.org/wiki/Rule_110. Wikipedia, January 20, 2015.
- [4] http://en.wikipedia.org/wiki/Translational_symmetry. Wikipedia, January 20, 2015.
- [5] Wolfram, Stephen. A New Kind of Science. Champaign: Wolfram Media, Inc., 2002

³This was discovered by Matthew Cook and published in 2004, and means that it is capable of supporting universal computation (Wikipedia [3]).



rule 128	role 129	nule 130	rule 131	rule 132	rule 133	rute 134	nie 125
rule 136	N/0 137	n/le 138	rule 139	rote 140	rule 141	rule 142	rute 143
rule 344	rule 145	AA 146	nik 147	rate 148	7.14 149	A 150	rule 151
nule 352	44 44 163 163	1.vie 154	rule 155	rule 156	AL 157	Null 158	rule 159
nule 160	A TOP TOT		nule 163	rule 164	A 105	rule 165	ALIA 167
rule 168	rule 163		rule 171	rule 172		rule 174	ruie 175
nule 176	nule 177	A/e 178	nule 179	081 9/01	rule 181	nule 182	rule 183
nule 184	rule 185	Ade 186	nule 187	831 ekon	rule 189	nue 130	rule 191
rule 192	nule 123	rule 194	44 44 195	rule 198	nde 197	rule 128	rule 199
rule 200	rufe 201	rule 202	rule 203	rule 204	rule 205	rule 208	rule 207
nule 200	Rife alun	7.Vie 210	nule 211	nute 212	rule 213	rule 214	rule 215
nule 216	nule 217		nule 219	nute 220	rule 221	nule 222	rule 223
rule 224	10 225		n/le 227	rule 228	rule 229	rule 250	nule 231
nule 232	rule 233	/.vie 234	rule 235	rule 236	n/e 237	rule 238	nie 239
nule 240	n# 241	Avite 242	nule 243	0/10 244	rule 245	nule 245	rule 247
nulo 248	rate 249	Avie 250	rule 251	rule 252	rule 253	rule 254	ruie 255