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In week one, we study the definition of a sequential dynamical system and a phase space.
A sequential dynamical system contains four key elements: a finite graph, a finite set of
states for the vertices, an update rule, and an update order. The phase space is a directed
graph that contains all the possible states in the SDS as vertices, and its edges are connected
based on the mapping of SDS. This week, we will study two special states—Garden of Eden
and fixed points.
Before we start to go into our problems, let me provide some useful definitions that will
help us in our later proofs. For the convenient sake, we will use the nor function we defined
in the first week to explain some of our definition. In case the readers forgot about nor
function, nor function is a function that inputs every vertex and its neighbors. If vertex
and its neighbors are all 0, the vertex changes to 1. Otherwise, the vertex changes to 0.
Our sequential dynamical system graph and the phase space are the following:

Figure 1: SDS Graph

Figure 2: Phase space

Definition 1. A configuration of an SDS is an n-bit vector {b1, b2, . . . bn}, where bi is the
value of the state of node vi (1 ≤ i ≤ n).

So a configuration is what we used to call ”possible states” in the first week. The order
of the numbers in the vector is determined by the order of the vertices in your SDS graph.
Using the nor function example, {0, 1, 0, 1} and {0, 0, 0, 0} are two configurations.
Now let us denote the function computed by SDS as FS , which inputs each configuration
C to the next configuration C’ in the phase space after carrying out the update of node
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states based on the update order. For example, in the nor function SDS above, FS will be
a map that sends {1, 1, 0, 0} and {0, 1, 0, 0} to {0, 0, 1, 0}, and so on. We can clearly see
that this function, comparing to our updating rules, is a tool to study the entire sequential
dynamical system instead of just one step update. We can call this kind function a global
function, comparing to the update rules, which are local functions. With the knowledge of
FS , we have the following two definitions:

Definition 2. Given two configuration C’ and C of an SDS S, C’ is a predecessor of C if
FS(C ′) = C, that is, S moves from C’ to C in one transition.

Definition 3. Given two configurations C’ and C of an SDS, C’ is an ancestor of C if
there is a positive integer t such that FSt(C ′) = C, that is, S evolves from C’ to C in one
or more transitions.

There is nothing tricky so far here. If we look at the phase space, the predecessor of
any vertex v is the vertex that changes to that vertex v. The ancestor of a vertex v is any
vertex in the phase space that eventually can change to the vertex v after few updates.
For example, in the nor function SDS, {0, 0, 0, 0} is {1, 0, 1, 0}’s predecessor. {0, 1, 0, 1}
is one of {1, 0, 1, 0}’s ancestors. Notice that if a configuration C’ is another configuration
C’s predecessor, then C’ is also that configuration C’s ancestor. Now you may wonder, as
our above example shows, sometimes configurations, such as {0, 0, 1, 1} in the above phase
space, might not have an ancestor. Of course, if we want to study them, we need to give
them a name. Look at the following two definitions:

Definition 4. A configuration C of an SDS S is a Garden of Eden (GE) configuration if
C has no predecessor.

Definition 5. A configuration C of an SDS is a fixed point if FS(C) = C, that is, if the
transition out of C is to C itself.

Based on the definition, we can say that we find many GE1 configuration in above ex-
ample. For example, {0, 0, 1, 1} is one of them since no other configurations can change to
{0, 0, 1, 1}. We cannot, however, find a fixed point. Fixed point requires that the configu-
ration has to be the same not only as its ancestor but the same as the predecessor. This
means that in our phase space for the SDS, we must have at least one self-loop. Now, let
me introduce another example. Looking at the following FS global map:

Figure 3

If we draw the the phase space for this map, we will have:

1The abbreviation for Garden of Eden configuration

2



Figure 4

In this phase space, we can find 6 self-loop: {1, 1, 0, 0}, {0, 0, 1, 1}, {0, 0, 0, 0}, {1, 1, 1, 1},
{1, 0, 0, 1}, and {0, 1, 1, 0}. These configurations are fixed points. As I just mentioned that
a fixed point must be the same as its predecessor. A good question the readers might ask is
that what if a configuration is the same as its ancestor but not predecessor. Please looking
at the following definition:

Definition 6. A configuration C of an SDS is a cycle configuration if C is on a cycle of
length 2 or more in the phase space.

Now based on this definition, we can conclude that if in a phase space, a vertex is sent
to itself without using any self-loop, there must exist a cycle configuration somewhere in the
phase space. Our figure 3 does not have any cycle configuration. Our original nor function
SDS, on the other hand, has a big obit in the middle. All the configurations in the orbit that
contain at least two configurations will contain cycle configurations because as we update
our SDS, a configuration in an orbit will eventually cycle through the entire orbit and get
back to itself2. Now since we have covered all the configurations that will eventually change
back to itself, what about those will not? Look at the following definition:

Definition 7. A configuration C of an SDS is a transient configuration if C is neither a
fixed point nor a cycle configuration

Unlike fixed points and cycle configurations, we notice that transient configurations are
those vertices in a phase space that will never be revisited again. Notice that GE is a special
case of transient configurations. In some sense GE not only will not be revisited again, but
GE is also the start point since it does not have any predecessors, That is why it is called
the Garden of Eden.
After all these definitions, the readers should have known that the local functions and the
global functions play very important roles in determining if there is a fixed points or GE.
In order to relate functions to configurations, first of all, let me define the following term:

2Based on the definition for an orbit from week 1
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Definition 8. An SDS S is invertible if the function FS is a bijection.

Take first look at this definition, and some readers might get confused. Try not to think
about the phase space but rather the map FS . For example, if we slightly modify figure 3,
we can make a bijection. We just need to make sure that for every element in the output set,
we only have one element in the input set that is mapped to it. As the following modified
map shows:

Figure 5

Theorem 1. Let S be a FR-SDS3. Then the following statements are equivalent:

1. S has a transient configuration.

2. S has a GE configuration

3. S has a configuration with two or more predecessors.

4. S is not invertible.

Proof. First of all, by definition, we know that each configuration only has exactly one suc-
cessor, or FS(C). In other word, each configuration can only change to one configuration.
Then, we know that if the phase space has N nodes, the number of edges in the phase space
is also N. With this knowledge, we can prove our theorem.
First, we will prove that if S has a transient configuration, then S has a GE configuration.
There are two cases. The first case is that if C configuration is a transient configuration that
has no predecessor, then we are done. The second case is that if C is a transient configuration
that has predecessor. Consider the sequence Pred(C), Pred(Pred(C), Pred(Pred(Pred(C))),
. . . . In this sequence, we know that there will be no repeating configuration because if there
is a repeating configuration, which means a configuration will either output two different
configurations, or the entire phase space is a cycle. However, we know that it is not possible
to either output two different configurations or have C to be a cycle configuration. Also,
since this is a finite SDS, there will eventually be a configuration that does not have prede-
cessor in the sequence. That configuration is GE configuration. Thus, we proved (1)→ (2).
Now let us prove (2)→ (3). We can prove this by contradiction. Let us assume that S only
has configuration with one or no predecessor. We know that there is a GE configuration.

3SDSs with finite phase spaces
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GE configuration has 0 predecessor based on the definition. Thus, we have N −1 nodes left
in our phase space. The maximum directed edges we can have here is N−1 edges, assuming
that the rest N − 1 nodes all have one predecessor. This, however, also contradicts to the
claim we proved earlier, that there are N directed edges. Thus, based on the method of
contradiction, we proved that if S has a GE configuration, S has a configuration with two
or more predecessors.
Now let us prove (3) → (4). If S has a configuration with two or more predecessors. We
know that for at least one configuration, there are two or more configurations that get
mapped to it. This means that FS is not a bijection. Thus, S is not invertible.
At last, we want to prove (4) → (1). We know that if S is not invertible, then FS is not
a bijection. In particular, since FS is a map that maps the inputs to itself. If FS is not
a bijection, then FS is neither injective nor subjective.4. FS is not surjective is particular
useful here. FS is not surjective implies that there is some configuration that does not have
a predecessor. This means that there is a GE configuration, and GE configuration is a
special case of transient configurations.

With (1)→ (2), (2)→ (3), (3)→ (4), and (4)→ (1), it is sufficient enough to say that
the four statements are equivalent.
We currently are working on a SDS version of the game of life. Specifically, we are trying
to find a glider or an oscillator in SDS Game of Life. In other words, if we draw the phase
space based on the game of life rules, we will try to find a cycle configuration or a fixed
point. Meanwhile, we will keep exploring GE configurations and fixed points in SDS.
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4Try to think about why this is true
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