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Here is a brief run-through of the NP Complete problems we have studied so far.
We began by showing the circuit satisfiability problem (or SAT) is NP Complete.
Then we reduced SAT to 3SAT, proving 3SAT is NP Complete. Next we reduced
the vertex cover problem, graph coloring, and minesweeper to 3SAT, showing the
all of these problems are NP Complete. We then took a jump and reduced The
World’s Hardest Game to Hamiltonian Paths, however we have not yet shown that
Hamiltonian Paths are NP Complete. Now we will look at a proof that Hamiltonian
circuits can be reduced to the vertex cover problem, and then that Hamiltonian Paths
can be reduced to Hamiltonian Circuits. This will complete our logic bringing us to
the conclusion that The World’s Hardest Game is NP Complete.

Hamiltonian Circuits

A graph G has a Hamiltonian Circuit if there exists a cycle that goes through every
vertex in G. We want to show that there is a way to reduce the vertex cover a graph
with a vertex cover, to a graph with a hamiltonian circuit. To do this we will construct
a graph G′, so G has a vertex cover of size k if and only if G′ has a hamiltonian circuit.
First to show hamiltonian circuits are in NP. This is obvious because we simply need
to traverse the given edges and make sure every vertex is run through, and that we
start and end at the same points, which can be done in polynomial time. Now to
show hamiltonian circuits are NP Hard.

Hamiltonian Circuits are in NP Hard

The details of this proof may not seem intuitive as we begin, so we will run through
an example while constructing a hamiltonian circuit from a vertex cover, and then
discuss why this will always work. We begin by creating gadgets that look like the
following
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You can enter and exit each gadget through the dotted lines at the ends. We see that
there are exactly three different ways to pass through every vertex in the gadget. The
red lines represent the possible paths.

For this first case, we move through one side of the gadget, go somewhere else in the
graph, and then come back through the other side. In the other two cases we run
through all of the gadget at once. For every edge in our vertex cover graph, where
the vertices in the vertex cover are blue, we place a gadget.

For Graph G

We place the gadgets as such, and since every edge contains at least one vertex in
the vertex cover, we will color the edge yellow on the side of each gadget where
there is a vertex in the vertex cover.
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Now create new (green) copy vertices for every vertex in the vertex cover of G. Label
these copy vertices {v1, v2...vk}. These copy vertices are part of G′ as are the gadgets.
We make connections between gadgets and other gadgets, and between gadgets and
the copy vertices. We make a connection between two gadgets if all of the following
conditions are met

• Both gadgets share a vertex, v1, in the vertex cover relative to the edge they
correspond to.

• There exist two gadgets that contain the same vertex, v1, in the vertex cover
that only have one connection to other gadgets.

• A maximum of 2 gadgets can be connected to a different gadget, where the
connections happen at opposite ends of the gadget.

We generally leave the two gadgets that are furtherest away, yet connected to the
same v1 to not be connected, however it does not matter. Here is a way we can
connect the gadgets

Within the gadgets, we make the following connections that correspond to which side
a vertex in a vertex cover is in relation to the gadget. The side of the gadget facing
a vertex cover vertex must be entered and exited in (side where we have 6 verticies
in a line).
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We make a connection for both sides of the gadget (here sides are where the original
edge breaks up the gadget, so the two connections represent one for in, and another
for out), that either goes to other gadgets or the copy vertices that were the copys of
the vertex cover. Every gadget must be entered and exited on the side neighboring
the red edge, which exists for every edge. If an endpoint of a gadget does not make a
connection to another gadget, then it connects to two of the copy vertices. This gives
us the following

As you can see, a vertex in the original vertex cover always has a certain amount of
sides of gadgets that belong directly to it. You can think of each of the vertices in the
vertex cover as breaking up the graph into regions, because we surround each vertex in
the vertex cover with a red path that comes from all the edges the vertex is contained
in. Since each gadget can contain a maximum of 2 vertices in it’s corresponding edge
and a minimum of 1, and there exists paths in the gadget that correspond to both of
those conditions, we will always make this kind of surrounding of the vertices in the
vertex cover.
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Now let’s connect gadgets to the copy vertices in red for our actual path. All of the
enterances and exits for our gadgets are inside regions corresponding to a vertex in the
vertex cover, and there are exactly two endpoints of gadgets that are not connected,
in red, to anything. We connect both of these endpoint vertices that aren’t connected
in red, to distinct copy vertices such that our first connection is to v1, and our second
connection is to v2. Since we know there is another connection to be made from each
vertex, now connect v2 to an endpoint of the next region. If we had more vertices we
would connect the second endpoint of this new region to v3, but since we have only
two copy vertices, we connect back to v1. This ensures every copy vertex is connected
to exactly two gadgets (that come from different regions), and don’t make smaller
cycles within the graph. This gives us the following construction

Now drawn without the rest of the graph

5



As you can see, this makes a hamiltonian circuit! Now why does this construction
always create a hamiltonian circuit? As we saw earlier, we enclose each vertex in
the vertex cover with our paths from the gadgets with respect to the edges they
correspond to. Now we connect each of these unconnected endpoints in the gadgets
to distinct copy verticies, which further enclosed the vertices in the vertex cover. Each
of these copy vertices connects to exactly one other unconnected endpoint of a gadget
from a different region (as these are the only connections that can be made from the
copy vertices). However there is one more unconnected endpoint of a gadget in this
new region that now connects to the next copy vertex. This continues until we reach
the point where the only copy vertex that a regions endpoint can connect to is the
very first copy vertex we connected to. We always have this situation because there
is one region for each vertex in the vertex cover, and one copy vertex for each vertex
in the vertex cover. Once we make this last connection, we finally completely enclose
the cycle, which by construction goes through all of our points.

NP Complete

We have shown that with a clever construction, any graph with a vertex cover, can
be used to make a graph with a Hamiltonian Circuit. Since creating such a graph can
be done under polynomial time, simply replace edges with gadgets and make proper
connections, we have a reduction from Vertex Coverings to Hamiltonian Circuits.
This means that finding whether a graph has a Hamiltonian Circuit or not is NP
Hard. Since this is also in NP, we have an NP Complete Problem

Hamiltonian Paths

We have shown that finding Hamiltonian Circuits in a graph is NP Complete, how-
ever in the proof of The Worlds Hardest Game, we used Hamiltonian Paths. The
reduction here is quite simple to show Hamiltonian Paths are also NP Complete. We
know that the decision problem of whether a Hamiltonian Path exists in a graph is
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in NP, because given a set of edges, we can check in polynomial time whether we’ve
gone through all the vertices. Given any Hamiltonian circuit it is already a path as
it goes through each vertex. Any Hamiltonian Path can be made into a Hamiltonian
Circuit through a polynomial time reduction by simply adding one edge between the
first and last point in the path. Therefore we have a reduction, which means that
Hamiltonian Paths are in NP Hard, and therefore in NP Complete.

Sources: Norbert Zeh, Computer Science Professor at Dalhousie University.
NP Completeness, https://web.cs.dal.ca/ nzeh/Teaching/3110/Notes/np-new.pdf
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