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1 Introduction

Previously, we have introduced a game involving players to fill in crossings
information, in order to achieve a knot or an unknot. We will now introduce
a similar game, but instead of players trying to obtain knots and unknots,
the objective will now be to obtain a link/unlink or a knot/unknot.

2 Link Smoothing Game

2.1 Basics

We begin by defining what a link and unlink is. A link is a collection of
knots that do not intersect. However, they can be linked together, where one
goes through the inside of the other. Like an unknot to a knot, the unlink
is a specific type of link in which the two (or more) circles that make up the
link are NOT linked together.

2.2 Players

In this game, there are two players. One of them is Link, while the other
one is Knot. The goal for Link is to separate the original configuration, such
that it is no longer connected in one piece. The goal for Knot is to keep
the configuration in one piece. Note, the unknot is a knot, so Knot wins if
an unknot is formed from all the moves. Similarly, Link wins if an unlink is
formed. Call the two players player L and player K.

2.3 Moves

The moves of both players are similar to the moves in the Knot Crossing
Game. Instead of over and under strands, we have horizontal and vertical
smoothings. Below is a diagram of such smoothings.
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3 Strategies

3.1 Trefoil

We begin by illustrating winning strategies of this game with the trefoil knot
with crossings missing.

Let player K start first. We note than the player K does not want to a
move like this, or else he will lose.

This is because it will give Player L the opportunity to perform this type
of move,
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which will cause the configuration to be disconnected, which means Player
L wins.

Thus, we see that player K must perform this move, as to not give the
player L a winning advantage.

We see that from here, the player K has a winning strategy. This is
because no matter what move L does, player K can perform a move such
that K wins. An illustration of this can be seen below.

Thus, we see if player K goes first, then he has a winning strategy.

Now, let player L go first, and make this move.
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Now, no matter what player K does, player L can perform a move that
lets him win, as shown below.

Thus, we see that if player L goes first, then he has a winning strategy.
From this, we see that the first player has a winning strategy.

3.2 Braid knots of more than 3 crossings

Claim: Player L has a winning strategy for braid knots with more than 3
crossings.

Proof. Let player L go first, and make this type of move.
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Now, no matter what player K does, player L can make the move again
and win. This is because all L needs to have two of these moves, in that
by placing 2 of these moves, he effectively separates the part of the knot in
between these two moves from the rest of the knot. Thus, L has a winning
strategy if he goes first.

Now, let player K go first. Since there are 4 or more crossings, both
players would have at least 2 turns When it’s player L’s turns, he only needs
to places two of these knots. This would ensure his victory, for the same
reason as above.

3.3 Some other strategies

Proposition 1. If the Link plays last in the game, then the link wins, which
means
(1). If the diagram has an even number of crossings and the Player L plays
second, then L wins,
(2). If the diagram has an odd number of crossings and the Player K plays
first, then L wins.
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Proof. If L does not win on his moves before the last move, then there are
only two projection cases before the last move. Since there’s only smoothing
move, other cases can only be some disconnected circles which means L has
already won before the last move.

In the first case, if L does horizontal smoothing, then it will get two circles
apart— the unlink, which means the link player wins.

In the second case, if L does vertically smoothing, then it will get the unlink,
too. Thus the Link player wins.

It is also obvious that the two cases above are actually the same.
Any diagram with one remaining pre-crossing can be resolved so that the
number of components either increases from one to two or remains at two or
greater.

We should also notice that player K can only win on the last move, but
player L can win before the last move. Because we cannot make sure the
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diagram stays in one piece until the last move is made, but we can actually
split the diagram apart before the last move.
Proposition 2. Suppose L plays first. Then L has a winning strategy if the
diagram contains a reducible crossing, i.e. a crossing that when appropriately
smoothed disconnects the shadow.
Reducible Crossing: A crossing in a knot diagram for which there exists a
circle in the projection plane meeting the diagram transversely at that cross-
ing, but not meeting the diagram at any other point.

Proof. If a reducible crossing is present, L can win on her first move. If L
vertically smooths the middle crossing of the triple, then she can win on her
second move.

Some example of reducible crossings.
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Thus for every reducible crossing, we can do the following step:

By doing this continuously, in the end we can get a reduced knot diagram.
Reduced knot diagram: A knot diagram in which none of the crossings
are reducible.

Does Link always have the upper hand??
No. This is an example of a diagram where Knot actually has a winning
strategy if she plays second.
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